Matairesinol Nanoparticles Restore Chemosensitivity and Suppress Colorectal Cancer Progression in Preclinical Models: Role of Lipid Metabolism Reprogramming

Shenshen Wu, Jiajia Wang, Zan Fu, Giuseppe Familiari, Michela Relucenti, Michael Aschner, Xiaobo Li, Hanqing Chen,* and Rui Chen*

Cite This: https://doi.org/10.1021/acs.nanolett.3c00035

ABSTRACT: Oncogenic-driven lipogenic metabolism is a common hallmark of colorectal cancer (CRC) progression. Therefore, there is an urgent need to develop novel therapeutic strategies for metabolic reprogramming. Herein, the metabolic profiles in the plasma between CRC patients and paired healthy controls were compared using metabolomics assays. Matairesinol downregulation was evident in CRC patients, and matairesinol supplementation significantly represses CRC tumorigenesis in azoxymethane/dextran sulfate sodium (AOM/DSS) colitis-associated CRC mice. Matairesinol rewired lipid metabolism to improve the therapeutic efficacy in CRC by inducing mitochondrial damage and oxidative damage and blunting ATP production. Finally, matairesinol-loaded liposomes significantly promoted the enhanced antitumor activity of 5-Fu/leucovorin combined with oxaliplatin (FOLFOX) in CDX and PDX mouse models by restoring chemosensitivity to the FOLFOX regimen. Collectively our findings highlight matairesinol-mediated lipid metabolism reprogramming as a novel druggable strategy to restore CRC chemosensitivity, and this nanoenabled approach for matairesinol will improve the chemotherapeutic efficacy with good biosafety.

KEYWORDS: colorectal cancer, liposome nanoparticles, metabolomics, triglyceride metabolism, lipid droplet

Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies worldwide and results in an estimated 900,000 deaths annually.² Although better screening and advances in surgical treatment have been achieved for CRC therapy, the long-term outcome of CRC patients remains not optimistic, and over 90% of metastatic CRC patients encounter treatment failure due to chemotherapy resistance.³ Thus, identifying a potential predictor and revealing the underpinning mechanism are urgently warranted for preventing CRC development and recovering chemosensitivity.

Metabolomics focuses on measuring the individual alterations of low-molecular-weight metabolites in response to a pathophysiological stimulus or genetic modification.⁴ As metabolites comprise the end products of gene expression and enzyme activities of organisms, the investigation of metabolites can help understand the consequences of the altered gene and protein expression, enzyme activities, and signaling pathways.⁴ Therefore, the characterization of metabolite signatures has been extensively incorporated into disease diagnosis, outcome prediction, customized drug treatments, and development of novel therapeutic approaches.⁵⁻¹⁰ Several studies on metabolic profiling have been performed to identify key metabolic compounds involved in CRC development,¹¹ monitor CRC progression,¹² and predict the survival of patients with CRC.¹³ Using mass spectrometry (MS)-based serum metabolic profiling, Leichtle et al. identified serum glycine and tyrosine in combination with carcinoembryonic antigen (CEA) as being superior to CEA alone in the detection of CRC in patients.¹⁴ Rachieriu et. al confirmed the association between upregulated lipogenesis and CRC progression using UPLC-QTOF-ESI’MS.¹⁵ Nevertheless, few metabolites have been translated into clinical applications.

To develop a metabolite-based therapeutic strategy for CRC treatment, we performed an unbiased GC-MS-based metabolomics of blood plasma from 100 CRC patients and paired healthy controls. The demographic and clinical information on subjects are summarized in Table S1. A total of 46 differential

Received: January 4, 2023
Revised: February 12, 2023
metabolites were identified, and the top 20 differentially modulated metabolites in CRC patients, relative to healthy controls. Among them, 15 metabolites were identified as the potential distinguished predictors for CRC progression (Figure S1A). The value for the area under the ROC curve (AUC) was 99.4% (Figure 1B). We next performed the targeted UPLC-MS/MS method to identify the top three discriminated metabolites (matairesinol, L phenylalanine, and X2 méthoxyestrone) and found only matairesinol was decreased in the CRC group (Figure 1C). The mean concentrations of matairesinol in healthy controls and CRC patients were 0.9720 ± 0.0243 and 0.1419 ± 0.1745.

Figure 1. Metabolic marker matairesinol is diminished in CRC and protects against tumor development. (A) The top 20 differential modulated metabolites in CRC patients, relative to healthy controls. (B) ROC curves derived from lasso regression for segregating healthy subjects from CRC patients. (C) Quantification of matairesinol in plasma samples of patients with CRC and healthy controls in the testing cohort ($n = 100$ each, $***P < 0.001$, compared with healthy controls, two-tailed t-test, error bars, S.D.). (D, E) Quantification of plasma matairesinol in (D) APCMin/+ and (E) colitis-associated CRC murine models. ($n = 30$ each, $***P < 0.001$, compared with the mice-with-tumor group, two-tailed t-test, error bars, S.D.). (F) Schematic of the generation of the colitis-associated CRC model ($n = 30$/group). (G) Macroscopic tumor numbers and (H) colon length of mice ($n = 11$ in the control group and $n = 20$ in the matairesinol-treated group, $***P < 0.001$, compared with the control group, two-tailed t-test, error bars, S.D.). (I) Overall survival of mice assessed using the Kaplan–Meier method (Log-rank $p < 0.05$). (J) Representative images and (K) colitis scores of H&E staining on distal colonic sections ($n = 11$ in the control group and $n = 20$ in the matairesinol-treated group, $***P < 0.001$, compared with the control group, two-tailed t-test, error bars, S.D.).
μg/L, respectively (Figure 1C). Similarly, decreased matairesinol was further confirmed in another independent study from 300 pairs of plasma from CRC patients and healthy controls (Figure S1B−E). Moreover, matairesinol was also significantly decreased in tumor-bearing APC^{Min/+} mice or murine AOM/DSS models compared to the tumor-free mice (Figure 1D, E). Collectively, our results indicate that matairesinol is downregulated in the plasma of CRC patients.

To evaluate the potential protective function of matairesinol in CRC therapy, we first compared the cellular effects of matairesinol on normal colonic epithelial NCM460 cells and two human CRC cell lines. Matairesinol treatment significantly inhibited the viability of HT29 and HCT116 cells in a concentration-dependent manner and exerted good biocompatibility and no cytotoxicity on NCM460 cells (Figure S2A). Next, a dose of 10 μM, which would actually correspond to human equivalent intakes of 0.098 mg of matairesinol per day for a 70 kg adult, was chosen for further study. We next investigated whether intragastric administration of matairesinol could inhibit CRC tumorigenesis using a colitis-associated cancer model (Figure 1F). Mice treated with matairesinol showed a significant reduction in tumor numbers (Figure 1G) and increased colon length (Figure 1H and Figure S2B), body weight (Figure S2C), and survival time (Figure 1I). Representative H&E staining images showed that mice treated with matairesinol had higher-grade dysplasia and a lower concentration of triglycerides (TGs) compared to the control group (Figure 1J). These results suggest that matairesinol is a potential candidate for CRC therapy.

Figure 2. Matairesinol decreases triglyceride by regulating PNLI and DGAT2 expression. (A) Heatmap of gene expression in control or matairesinol-treated murine colons. The down-regulation and up-regulation of genes are expressed by green and red color, respectively. (B) Enriched KEGG pathways of the differentially expressed genes identified in the RNA-Seq assay. (C) Heat-map of fat digestion and absorption and glycerolipid metabolism pathway-involved mRNA (n = 11 in the control group and 20 in the matairesinol-treated group). The down-regulation and up-regulation of genes are expressed by green and red color, respectively. (D) Representative images and (E) immunoreactive score (IRS) of PNLI and DGAT2 in colonic tissues of mice, as determined by IHC (n = 11 in the control group and n = 20 in the matairesinol-treated group, ***P < 0.001, compared with the control group, two-tailed t-test, error bars, S.D.). (F) PNLI and DGAT2 protein levels in the colonic tissues of mice were determined by WB (n = 3 in each group). (G) Quantification of colonic triglycerides (TGs) in the colitis-associated cancer model (n = 11 in the control group and n = 20 in the matairesinol-treated group, ***P < 0.001, compared with the control group, two-tailed t-test, error bars, S.D.). (H) Effect of matairesinol on TGs levels in colorectal cancer cells. ***P < 0.001, calculated using one-way ANOVA.
histological score of the tumor compared with control mice (Figure 1J, K). Altogether, these data demonstrate that matairesinol might be pivotal for preventing colitis-associated CRC development in mice.

To elucidate the potential regulatory mechanism of matairesinol in CRC therapy, an RNA-Seq assay was carried out in colonic tissues from AOM/DSS model mice with or without matairesinol treatment. A total of 197 up-regulated and 294 down-regulated mRNAs were identified in matairesinol-treated mice with a cutoff of fold change (FC) > 1.5 and p-value <0.05 (Figure 2A). These differentially regulated genes were then annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database and grouped into CRC development.

Inhibition of the binding affinity of NF-κB p65 to PNLIP and DGAT2 promoter region was evidenced in both CRC cells with matairesinol treatment (Figure S4C, D). Similarly, matairesinol-treated CRC cells showed a significant inhibition on NF-κB luciferase activity (Figure S4E). Moreover, matairesinol treatment led to decreased levels of PNLIP and DGAT2 protein, and such inhibition was rescued by NF-κB p65 overexpression (Figure S4F). These findings suggested that matairesinol attenuated the altered lipid metabolism and decreased TG accumulation in CRC through inhibiting NF-κB/p65 mediated transcriptional regulation on PNLIP and DGAT2.

Increased lipid droplet (LD) accumulation has been identified as a prominent characteristic of cancer. LDs, as specific lipid-storage organelles, are formed de novo following the expression of TGs. The hydrophobic core of LD is formed by the TG pathway called the glycerol-phosphate pathway, which is terminated by both diacylglycerol O-acyltransferase enzymes DGAT1 and DGAT2. LDs exert two kinds of functions, including energy production during both nutrient and oxygen deprivation, to prevent lipotoxicity induced by excess fatty acid accumulation. Thus, LDs have been reported to be involved in cancer development and anticancer therapies, and the intricate regulation of LDs could be targeted for drug development. We thus examined whether inhibition of the cellular viability was caused by decreased LD synthesis and LD formation in matairesinol-treated CRC cells. Matairesinol treatment significantly induced apoptosis in both CRC cells. Matairesinol treatment significantly increased the level of ROS in the colon of CRC mice treated with matairesinol. N-acetylcysteine (NAC), the ROS scavenger, significantly blunted matairesinol-induced ROS production in both CRC cells. Similarly, matairesinol treatment significantly increased the level of ROS in the colon of CRC mice compared with that in AOM/DSS-induced CRC mice (Figure S5G). Additionally, matairesinol treatment significantly induced apoptosis in both CRC cells (Figure S6A-C) and in CRC mice (Figure S6D). Western blot analysis showed that matairesinol treatment resulted in high levels of cytochrome c release from damaged mitochondria to the cytosol and increased the expressions of cleaved caspase-3 and cleaved caspase-9 proteins (Figure S6E). We further examined whether matairesinol induced mitochondrial injury in a manner involving an altered level of ATP in CRC cells and mice. As expected, matairesinol treatment significantly
Figure 3. Ablation of Pnlip or Dgat2 inhibits CRC development. (A) Schematic of the generation of colitis-associated CRC model in intestine Pnlip knockout mice \((n = 30/\text{group}) \). (B) Representative murine colon tissue images of the intestine Pnlip knockout mice following AOM-DSS administration. (C) Quantification of colonic TGs in murine colon tissues of the intestine Pnlip knockout mice \((n = 14 \text{ in the Pnlip}^{\text{Flx/Flx}} \text{ group}, n = 22 \text{ in the Pnlip}^{\text{Flx/Flx}} \text{ and matairesinol-treated group}, n = 24 \text{ in the Pnlip cKO group}, n = 25 \text{ in the Pnlip cKO and matairesinol-treated mice}, \text{***}P < 0.001, \text{compared with the Pnlip}^{\text{Flx/Flx}} \text{ group, one-way ANOVA, error bars, S.D.}) \). (D) Quantification of colonic ATPs in murine colon tissues of the intestine Pnlip knockout mice \((n = 14 \text{ in the Pnlip}^{\text{Flx/Flx}} \text{ group}, n = 22 \text{ in the Pnlip}^{\text{Flx/Flx}} \text{ and matairesinol-treated group}, n = 24 \text{ in the Pnlip cKO group}, n = 25 \text{ in the Pnlip cKO and matairesinol-treated mice}, \text{***}P < 0.001, \text{compared with the Pnlip}^{\text{Flx/Flx}} \text{ group, one-way ANOVA, error bars, S.D.}) \). (E) Representative fluorescence images of apoptosis (green) detected with Tunel staining in murine colon tissue of Pnlip knockout mice. Nuclei were stained with DAPI (blue). (F) Representative fluorescence images of ROS (red) detected with DHE staining in...
Figure 3. continued

decreased ATP levels in HCT116 and HT29 cells (Figure S6F) and in AOM/DSS-induced CRC mice (Figure S6G). These results indicated that matairesinol treatment leads to inhibition of LD formation, which increases mitochondrial fragmentation and damage, ROS production, and apoptosis in the treatment of CRC.

To functionally test the role of Pnlip in CRC development, we generated an intestinal conditional Pnlip knockout mouse model (Pnlip cKO) by using the Flox/Cre system (Figure S7A), and then employed Pnlip^{FloxFlox} and Pnlip cKO mice for further experiments (Figure 3A). Pnlip cKO mice treated with AOM and DSS had longer colon lengths (Figure S7C), decreased tumor numbers (Figure S7C), increased body weights (Figure S7D), and increased survival time (Figure S7E) compared with Pnlip^{FloxFlox} mice. Pnlip cKO mice showed a significantly lower histological score than Pnlip^{FloxFlox} mice (Figure S7F). Levels of Pnlip and Tip47 protein were downregulated in Pnlip cKO mice compared with Pnlip^{FloxFlox} mice (Figure S7G, H). Pnlip knockout significantly decreased the levels of colonic TGs (Figure 3C) and ATP (Figure 3D) and increased apoptosis (Figure 3E) and ROS levels in AOM/DSS-treated mice (Figure 3F). As expected, matairesinol significantly inhibited CRC development in Pnlip^{FloxFlox} mice and mildly increased the therapeutic efficacity of AOM/DSS-treated Pnlip cKO mice (Figure 3A−F and Figure S7A−H), indicating that matairesinol represses CRC tumorigenesis by partly downregulating Pnlip.

By using a similar strategy, we generated conditional intestine Dgat2 knockout mice (Figure S8A) and found that intestine Dgat2 ablation attenuated CRC development by inducing ROS elevation, apoptosis, and inhibiting ATP production (Figure 3G−L and Figure S8A−H). Taken together, these results corroborate that matairesinol protects against CRC development by down-regulating Pnlip and Dgat2.

Given the demonstrated role of matairesinol in inhibiting the CRC development in vivo, we speculated that matairesinol might enhance chemo sensitivity for CRC. We first measured the contents of matairesinol in 521 patients with metastatic CRC, whose intact chemotherapy information was available. The concentration of matairesinol in corresponding plasma samples was 0.1012 ± 0.079 μg/mL. IHC analysis showed significantly less positive staining of PNLIP, DGAT2, and TIP47 in tumor tissues of CRC patients with high matairesinol levels compared to CRC patients with low matairesinol (Figure S9A, B). Plasma matairesinol levels were positively correlated with overall survival and progression-free survival in 521 CRC patients (Figure S10A, B). Furthermore, patients with high levels of plasma matairesinol had a significantly greater chance of achieving clinical benefit from FOLFOX treatment, compared to those with low matairesinol levels (Table S2), indicating that matairesinol sensitizes colorectal cancer to the FOLFOX regimen.

It has been shown that matairesinol is a dibenzylbutyrolactone lignan consisting of two aromatic rings (aryl groups) linked with a seven-carbon chain, which is another subclass of natural nonflavonoid polyphenols. However, the probable use of the polyphenolic compounds in humans is particularly restricted by several factors, the most common being its insoluble nature, i.e., insolubility, impermeability, fast release, low bioavailability, and ability to be influenced by various environmental factors (heat, temperature, moisture, etc.). Low solubility leads to low bioavailability; therefore, to promote the enhanced therapeutic efficacy of matairesinol in combination with FOLFOX in CRC, matairesinol-encapsulated liposomes (Liposome-Ma) were prepared, and the enhanced antitumor activity was investigated in HCT116 and HT29 CRC human colon tumor-bearing nude mice. Representative transmission electron microscopy (TEM) images confirmed the spherical structure of the blank liposome and Liposome-Ma (Figure 4A). The hydrodynamic size, polydispersity index (PDI), and average surface potential were 66.1 ± 0.9 mV for blank liposomes and 81.0 ± 0.4 nm, 0.17 ± 0.02, and −33.7 ± 2.4 mV for Liposome-Ma, respectively (Figure 4B−E). The encapsulation efficiency of matairesinol in Liposome-Ma was 85%, and matairesinol was efficiently loaded in liposomes with a drug loading content of 9.8%, as measured by UV−vis spectrophotometry (Figure 4F).

HCT116 (Figure 4G−J) and HT29 (Figure S11A−E) derived CDX mice were treated with the FOLFOX regimen or in combination with matairesinol. FOLFOX treatment significantly decreased the tumor volume in CDX mice, and treatment with the FOLFOX-matairesinol combination strongly reduced the CRC tumor burden compared with FOLFOX treatment alone (Figure 4G, H and Figure S11A, B). Histological examination also revealed that FOLFOX plus matairesinol treatment, but not FOLFOX alone, decreased the positive staining of PNLIP, DGAT2, and TIP47 in xenograft tumors compared with CRC control (Figure 4L, J and Figure S11C, D). Relative to the untreated group, the expression of the proliferative marker, Ki-67, was significantly decreased in tumors from the combination (matairesinol and FOLFOX) or FOLFOX alone groups, especially for combination treatment (Figure 4I, J and Figure S11C, D). Increased apoptosis and ROS levels of tumor cells were found in the combination treatment group (Figure 4K and Figure S11E). In addition, liposome-Ma strongly enhanced synergized with FOLFOX in CRC therapy compared with matairesinol treatment, as evidenced by significantly decreased tumor volume, positive staining of PNLIP, DGAT2, TIP47, and Ki-67, and

Nano Lett. XXXX, XXX, XXX−XXX

https://doi.org/10.1021/acs.nanolett.3c00035
Figure 4. Matairesinol-loaded liposomes sensitize colorectal cancer to the FOLFOX regimen in the HCT116 cell derived CDX mice model. (A) TEM image of blank liposome and matairesinol liposome. (B−D) The (B) average size, (C) polydispersity index (PDI), and (D) surface charges of blank liposome and matairesinol liposome. (E) Size distribution of blank liposome and matairesinol liposome. (F) UV−vis spectrum of different concentrations of matairesinol. (G−J) Effect of FOLFOX and matairesinol on (G, H) flank tumor burden and (I, J) PNLIP, DGAT2, TIP47, and Ki67 staining of HCT116 nude mice (n = 6 in each, ***P < 0.001, *P < 0.05, compared with the control group, one-way ANOVA, error bars, S.D.). (K) Representative fluorescence images of apoptosis (green) and ROS (red) were detected with Tunel and DHE staining in flank tumors of HCT116 nude mice, respectively. Nuclei were stained with DAPI (blue).
Figure 5. Matairesinol-loaded liposomes sensitize colorectal cancer to the FOLFOX regimen in a PDX mice model. (A) Schematic of the FOLFOX-sensitive PDX model and FOLFOX-resistant PDX model 1. (B, C) Effect of FOLFOX and matairesinol on (B) Oxter tumor burden and (C) PNLIP, DGAT2, TIP47, and Ki67 staining in FOLFOX-sensitive PDX model mice treated with FOLFOX and (or) matairesinol (n = 45 in each). (D) Representative fluorescence images of apoptosis (green) and ROS (red) detected with Tunel and DHE staining in the Oxter tumor of FOLFOX-sensitive PDX model mice, respectively. Nuclei were stained with DAPI (blue). (E, F) Effect of FOLFOX and matairesinol on (E) Oxter tumor burden and (F) PNLIP, DGAT2, TIP47, and Ki67 staining in FOLFOX-resistant PDX model 1 mice treated with FOLFOX and (or) matairesinol (n = 15 in each). (G) Representative fluorescence images of apoptosis (green) and ROS (red) detected with Tunel staining in the Oxter tumor of FOLFOX-resistant PDX model 1 mice, respectively. Nuclei were stained with DAPI (blue). (H) Schematic of CRC development and key modulators affected by matairesinol.
increased apoptosis and ROS levels in HCT116 and HT29 CRC human colon tumor-bearing nude mice (Figure 4G−J and Figure S11A−E).

Tumor tissues collected from 20 CRC patients were used to establish the PDX model (Table S3). Based on the consequence of FOLFOX treatment, the PDX model mice were assigned into the FOLFOX-sensitive group and the FOLFOX-resistant PDX model 1 group (Figure S5A). For the FOLFOX-sensitive group, the patients were known to have no tumor recurrence after the first time of surgery and FOLFOX chemotherapy. Fresh human CRC tissues obtained from primary surgery of CRC patients were used to establish a FOLFOX-sensitive PDX model (Figure S5A). We found that FOLFOX and matairesinol combination treatment had an inhibitory effect on tumor growth (Figure 5B and Figure S11A−E). Positive staining of PNLIP, DGAT2, and TIP47 was significantly downregulated in matairesinol and FOLFOX-treated mice, but not FOLFOX alone, as determined by IHC (Figure SC and Figure S12B). Markedly attenuated expression of K-67 (Figure 5C and Figure S12B) and increased apoptosis (Figure 5D) and ROS levels (Figure 5D) were observed in tumors from the combination or FOLFOX alone treatment compared with untreated mice, especially for the combination treatment. For the FOLFOX-resistant group, matairesinol treatment significantly reduced the tumor burden (Figure 5E and Figure S12C). Levels of PNLIP, DGAT2, TIP47, and K-67 proteins, apoptosis, and ROS production were consistently decreased in matairesinol-treated, but not FOLFOX alone treated mice (Figure SF and Figure S12D). In addition, we collected CRC tissues at the second time of surgery in relapse patients and established the FOLFOX-resistant PDX model 2 (Figure S13A). Again, we observed a similar trend in both tumor burden, protein levels of PNLIP, DGAT2, TIP47, and K-67, and apoptosis and ROS levels in matairesinol-treated or FOLFOX alone treated mice (Figure S13B−F). Moreover, liposome-Ma treatment significantly reduced the tumor burden in both FOLFOX-sensitive and FOLFOX-resistant PDX model mice, compared with matairesinol treatment (Figure S5A−G and Figure S13A−F). To evaluate the safety of the liposome-mediated matairesinol delivery, we then performed H&E staining in the heart, liver, lung, or kidney of CDX and PDX model mice. As shown in Figure S13, we did not observe any pathological damage in the heart, liver, lung, or kidney in either CDX (Figure S14A) or PDX (Figure S14B) model mice, suggesting the liposomes were safe and biocompatible drug carriers for matairesinol delivery.

In our study, we demonstrated the role of matairesinol in CRC inhibition through attenuation of LD accumulation. However, whether other mechanisms are involved in CRC development needs to be further explored. For example, during gut homeostasis, mitochondrial β-oxidation of fatty acids causes epithelial hypoxia, which maintains anaerobiosis in the lumen of the gut, suggesting matairesinol treatment might disrupt gut anaerobiosis through damaging mitochondrial. Further, the anaerobic bacterium, for example, Fusobacterium nucleatum promotes colorectal carcinogenesis through the microbiome-derived metabolites. Thus, matairesinol-loaded liposomes might inhibit CRC by modulating the microbiota metabolism. In addition, LDs modulate the crosstalk between tumor cells and immune cells, such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and dendritic cells (DCs), suggesting the roles of LDs in regulating the tumor microenvironment. In conclusion, these findings supported the notion that matairesinol was a novel antitumor adjuvant for CRC therapy by rewiring lipid metabolism, and liposomes can be used as potential drug delivery to improve the therapeutic efficacy of matairesinol in CRC treatment through recovering chemosensitivity and enhancing the enhanced antitumor activity of FOXLFOX for CRC therapy (Figure 5H).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.3c00035.

Experimental section; quantification of the metabolite in plasma samples of patients with CRC and healthy controls (Figure S1); effects of matairesinol on viability of CRC cells and colon length and body weight of the colitis-associated cancer model mice (Figure S2); effect of matairesinol on PNLIP and DGAT2 expression (Figure S3); matairesinol regulates PNLIP and DGAT2 expression by inhibiting NF-κβ p65 activity (Figure S4); matairesinol induces mitochondrial damage, and ROS elevation by inhibiting LD storage in CRC cells (Figure S5); matairesinol induces cell apoptosis and reduces ATP production in CRC cells (Figure S6); effects of Plnlip intestine conditional knockout on CRC (Figure S7); effects of Dgat2 intestine conditional knockout on CRC (Figure S8); PNLIP, DGAT2 and TIP47 expression in CRC patients (Figure S9); survival information for patients with CRC and different matairesinol levels (Figure S10); matairesinol-loaded liposomes sensitize colorectal cancer to FOLFOX regimen in HT29 cell derived CDX mice model (Figure S11); matairesinol-loaded liposome reduces PDX tumor burden in FOLFOX-resistant PDX model 1 mice (Figure S12); matairesinol-loaded liposomes sensitize colorectal cancer to FOLFOX regimen in a FOLFOX-resistant PDX model mice (Figure S13); systematic toxicity assessment of matairesinol-loaded liposomes (Figure S14); frequency distribution of the selected variables in colorectal cancer cases and controls (Table S1); association between Mat levels and response rates, colorectal cancer patient’s survival (Table S2); clinical characteristics of the patients used for developing PDX models (Table S3) (PDF)

AUTHOR INFORMATION

Corresponding Authors

Rui Chen — School of Public Health, Capital Medical University, Beijing 100069, P.R. China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, P. R. China; Beijing Laboratory of Allergic Diseases, Capital Medical University, Beijing 100069, P. R. China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou S11436, P. R. China; orcid.org/0000-0001-9239-0891; Email: ruichen@ccmu.edu.cn

Hanqing Chen — Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou S10180, P. R. China; Email: chenh921@163.com
Nano Letters

Authors
Shenshen Wu — School of Public Health, Capital Medical University, Beijing 100069, P.R. China
Jiajia Wang — School of Public Health, Capital Medical University, Beijing 100069, P.R. China
Zan Fu — Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
Giuseppe Familiari — Department of Anatomical, Histological, Medical and Legal Locomotive Apparatus, Section of Human Anatomy Via Alfonso Borelli, Sapienza University of Rome, Roma 00185, Italy
Michela Relucenti — Department of Anatomical, Histological, Forensic Medicine and Orthopedic Science, Sapienza University of Rome, Roma 00185, Italy
Michael Aschner — Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
Xiaobo Li — School of Public Health, Capital Medical University, Beijing 100069, P.R. China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P.R. China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.nanolett.3c00035

Author Contributions

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
This work was financially supported by the National Science Fund for Distinguished Young Scholars (82025031), the State Key Program of the National Natural Science Foundation of China (82230109), the National Natural Science Foundation of China (82003499, 32171370, 82241084, 81973084), the Scientific Research Common Program of Beijing Municipal Commission of Education (KM202110025206), the Youth Beijing Scholar Program, and the National Institute of Environmental Health Sciences (NIEHS) (R01 ES10563, R01 ES07331, and R01 ES020852).

REFERENCES
https://doi.org/10.1021/acs.nanolett.3c00035
Nano Lett. XXXX, XXX, XXX–XXX
and Molecular Dynamics Techniques for their Anti-cancer Potential.

(23) Wu, Q.; Wang, Y.; Li, Q. Matairesinol exerts anti-inflammatory and antioxidant effects in sepsis-mediated brain injury by repressing the MAPK and NF-kappaB pathways through up-regulating AMPK. *Aging (Albany NY)* 2021, 13, 23780–23795.

(24) Grabe, N. AliBaba2: context specific identification of transcription factor binding sites. *In Silico Biol.* 2002, 2, S1–S1S.

