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ABSTRACT
Objective To evaluate the clinical significance of deep 
learning- derived brain age prediction in neuromyelitis 
optica spectrum disorder (NMOSD) relative to relapsing- 
remitting multiple sclerosis (RRMS).
Methods This cohort study used data retrospectively 
collected from 6 tertiary neurological centres in China 
between 2009 and 2018. In total, 199 patients with 
NMOSD and 200 patients with RRMS were studied 
alongside 269 healthy controls. Clinical follow- up was 
available in 85 patients with NMOSD and 124 patients 
with RRMS (mean duration NMOSD=5.8±1.9 (1.9–9.9) 
years, RRMS=5.2±1.7 (1.5–9.2) years). Deep learning 
was used to learn ’brain age’ from MRI scans in the 
healthy controls and estimate the brain age gap (BAG) 
in patients.
Results A significantly higher BAG was found in 
the NMOSD (5.4±8.2 years) and RRMS (13.0±14.7 
years) groups compared with healthy controls. A higher 
baseline disability score and advanced brain volume loss 
were associated with increased BAG in both patient 
groups. A longer disease duration was associated with 
increased BAG in RRMS. BAG significantly predicted 
Expanded Disability Status Scale worsening in patients 
with NMOSD and RRMS.
Conclusions There is a clear BAG in NMOSD, although 
smaller than in RRMS. The BAG is a clinically relevant 
MRI marker in NMOSD and RRMS.

INTRODUCTION
Age is an independent marker for disease progres-
sion in neuromyelitis optica spectrum disorder 
(NMOSD)1 and multiple sclerosis (MS),2 two 
major inflammatory demyelinating diseases of the 
central nervous system.1 3 However, ageing does 
not affect everyone in the same way, so researchers 
have sought biological markers of ageing processes 
that may explain some of these individual differ-
ences and are more reflective of age- related disease 
processes. The so- called ‘brain age’ paradigm has 
been designed to determine the brain’s biological 
age,4 which can be estimated from anatomical brain 
MRI scans. By analysing the similarity of a given 
brain scan with scans from a range of healthy indi-
viduals, machine- learning techniques can predict 
a person’s brain age from neuroimaging features, 
providing a novel way of indexing deviations from 
normal brain ageing. Compared with calendar 

age, brain age may provide more comprehensive 
information for understanding disease impact in 
NMOSD and relapsing- remitting MS (RRMS).

The brain age gap (BAG) is the difference between 
calendar age and predicted brain age. BAG thus 
represents the deviation from an expected healthy 
ageing trajectory. This MRI biomarker integrates 
structural alterations across the brain associated 
with the ageing process.5 6 Previous studies have 
suggested that BAG is associated with various clin-
ical risk factors and can be used for risk stratifica-
tion of various neurological and psychiatric diseases 
including MS.7 However, no one has investigated 
BAG in patients with NMOSD and its ability to 
understand and predict Expanded Disability Status 
Scale (EDSS) worsening.

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ The deep learning- derived brain age gap (BAG) 
is associated with various clinical risk factors 
and can be used for risk stratification of various 
neurological and psychiatric diseases, including 
multiple sclerosis (MS).

 ⇒ The clinical significance of BAG prediction 
in neuromyelitis optica spectrum disorder 
(NMOSD) relative to relapsing- remitting 
multiple sclerosis (RRMS) is not known.

WHAT THIS STUDY ADDS
 ⇒ A deep learning model was able to estimate 
BAG from three- dimensional structural MRI 
scans and is robust across multiple centres and 
multiple scanners.

 ⇒ A significant BAG was found in patients with 
NMOSD compared with healthy controls, 
although it was less marked than in patients 
with RRMS.

 ⇒ Higher disability and advanced atrophy were 
associated with a larger BAG in both NMOSD 
and RRMS.

 ⇒ BAG was a predictive biomarker of Expanded 
Disability Status Scale worsening in NMOSD 
and RRMS.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE AND/OR POLICY

 ⇒ BAG is a comprehensive and relevant disease 
marker in NMOSD and RRMS.

copyright.
 on O

ctober 16, 2022 by guest. P
rotected by

http://jnnp.bm
j.com

/
J N

eurol N
eurosurg P

sychiatry: first published as 10.1136/jnnp-2022-329680 on 10 O
ctober 2022. D

ow
nloaded from

 

http://jnnp.bmj.com/
http://orcid.org/0000-0001-9963-529X
http://orcid.org/0000-0002-8753-0260
http://orcid.org/0000-0003-1908-5588
http://orcid.org/0000-0002-9930-0331
http://dx.doi.org/10.1136/jnnp-2022-329680
http://dx.doi.org/10.1136/jnnp-2022-329680
http://dx.doi.org/10.1136/jnnp-2022-329680
http://crossmark.crossref.org/dialog/?doi=10.1136/jnnp-2022-329680&domain=pdf&date_stamp=2022-010-10
http://jnnp.bmj.com/


2 Wei R, et al. J Neurol Neurosurg Psychiatry 2022;0:1–7. doi:10.1136/jnnp-2022-329680

Multiple sclerosis

In this study, we used a novel deep- learning brain age model 
to investigate the utility of BAG as a neuroimaging biomarker 
to predict EDSS worsening in NMOSD and RRMS in a large 
multicentre dataset.

METHODS
Participants
Data from patients with NMOSD and RRMS were retrospec-
tively collected from six tertiary neurological centres in China 
covering the period between November 2009 and April 2018. 
Patients who fulfilled the following criteria were included: (a) 
confirmed diagnosis of NMOSD according to 2015 revised diag-
nostic criteria8 or RRMS according to 2017 McDonald criteria9; 
(b) complete demographic and clinical information, including 
baseline EDSS score and disease duration and (c) good quality 
baseline three- dimensional (3D) T1- weighted structural images 
(T1WI). Clinical evaluation, diagnosis, treatment and follow- up 
assessments of the participants were conducted at each centre 
by local neurologists with expertise in demyelinating diseases. 
EDSS worsening was defined as an increase in EDSS score ≥1.0 
for baseline EDSS ≤5.5 or an increase in EDSS score ≥0.5 for 
baseline EDSS >5.5, as previously published.10

Data for deep learning model training
Training data for our deep learning- derived brain age included 
MRI scans from healthy controls (HCs, n=9794) from publicly 
available datasets, including Alzheimer’s Disease Neuroimaging 
Initiative (ADNI), The Australian Imaging, Biomarkers and 
Lifestyle (AIBL),11 Brain Genomics Superstruct Project (GSP)12 
and Southwest University Longitudinal Imaging Multimodal 
(SLIM),13 as well as a group of healthy people scanned at Beijing 
Tiantan Hospital from January to December 2019 (online supple-
mental table 1, online supplemental figure 1). After training, the 
model was tested on two further independent datasets. Internal 
validation data comprised another group of healthy participants 
(n=462) scanned at Beijing Tiantan Hospital from January to 
April 2020 on two different scanners (see online supplemental 
table 1). The external validation dataset included HCs from the 
multicentre NMOSD and MS cohorts (n=267).

Image acquisition and data preprocessing
All the MRI scans of participants as well as the validation dataset 
were acquired using 3.0 T scanners at 1.0 mm isotropic resolu-
tion using Magnetization Prepared- RApidGradient Echo imaging 
(MP- RAGE) or similar sequences. Non- contrast 3D T1- weighted 
scans were affinely registered to Montreal Neurological Insti-
tute (MNI) space. Skull stripping was performed by HD- BET 
on the registered scans.14 The signal intensity of the resulting 
images was normalised by dividing by the mean intensity within 
the cerebral mask. Scans were then resampled to 1 mm isotropic 
resolution using linear interpolation and served as the input of 
the proposed convolutional neural network (CNN).

Age at each scan was determined by either of two methods: 
(1) the demographic metadata (in years) provided by owners of 
the dataset; (2) calculated from the difference between date of 
birth and image acquisition date recorded in DICOM metadata, 
which was done in days and converted to years. Inconsistent data 
were omitted from the study.

Brain volume measurement
Brain volume segmentation was performed using the auto-
mated recon- all procedure in FreeSurfer package (V.6.0.0) as 
described by Fischl et al.15 The total brain volume was calculated 

and normalised by dividing by the estimated total intracranial 
volume.16

Model construction, training and prediction
We built a 3D CNN called the 3D Simple Fully Convolutional 
Neural Network (SFCN) network as per the work of Peng et 
al.17 We modified the output structure so that the network could 
predict age across a larger range of 6–90 years. Model training 
and mathematical details are described in the online supplemen-
tary material.

BAG was calculated by subtracting chronological age from 
predicted brain age, with a positive BAG indicating an older- 
looking brain. To investigate the possible influence of brain 
lesions on age prediction, we performed a correlation analysis 
between raw and lesion- filled 3D T1WI images. Lesion filling 
was performed by default pipeline of Lesion Segmentation Tool 
(V.3.0.0, https://www.applied-statistics.de/lst.html).

Statistical analysis
Statistical analyses were conducted using R (V.3.6.3). Graphs 
were plotted with ggplot2 package. Intergroup comparison was 
conducted using the χ2 test (for categorical variables), Wilcoxon 
signed- rank test (for EDSS) and Student’s t- test or analysis of 
variance with Tukey’s range test as post hoc analysis (for contin-
uous variable). Survival analysis with Kaplan- Meier curve and 
Cox proportional hazards model were used to analyse time- 
to- progression data. Other details are described in the online 
supplementary material. All statistical tests were two- sided, and 
p<0.05 was considered statistically significant.

RESULTS
Participants
In total, 199 patients with NMOSD, 200 patients with RRMS 
and 269 age- matched and sex- matched HC subjects were 
included (table 1). Patients with NMOSD were older at baseline 
(41.0±13.0 years vs 37.1±11.4 years, p=0.005), had a longer 
disease duration (4.5±5.1 years vs 3.2±4.4 years, p=0.006) 
and had less severe disability measured by EDSS at baseline (2.0 
vs 3.5, p<0.001) than patients with RRMS. Of the patients 
with NMOSD included, 52 (26.1%) patients received disease- 
modifying therapy (DMT), others received immunosuppressants 
including cyclophosphamide and azathioprine. In the RRMS 
group, 86 (43.0%) patients received an MS- specific DMT, others 
received the above other treatment.

Follow- up data were available for 85 patients with NMOSD 
and 124 patients with RRMS (median follow- up duration: 
5.8±1.9 years and 5.2±1.7 years, respectively). During 
follow- up, 31 patients with NMOSD and 42 patients with 
RRMS experienced EDSS worsening.

Brain morphometry of the participants
Both the NMOSD and RRMS groups had lower brain volumes 
than the HCs (1080.1±121.5 mL and 1058.9±94.4 mL vs 
1154.6±98.5 mL, both p<0.001). While the NMOSD and 
RRMS groups were not significantly different in raw brain 
volume (p=0.108), normalised brain volumes revealed less 
pronounced atrophy in patients with NMOSD (0.750±0.038 
vs 0.731±0.045, p<0.001). The lesion load in the NMOSD 
group was lower than that in the RRMS group (4.9±8.1 mL vs 
12.7±17.9 mL, p<0.001) (table 1).

copyright.
 on O

ctober 16, 2022 by guest. P
rotected by

http://jnnp.bm
j.com

/
J N

eurol N
eurosurg P

sychiatry: first published as 10.1136/jnnp-2022-329680 on 10 O
ctober 2022. D

ow
nloaded from

 

https://dx.doi.org/10.1136/jnnp-2022-329680
https://dx.doi.org/10.1136/jnnp-2022-329680
https://dx.doi.org/10.1136/jnnp-2022-329680
https://dx.doi.org/10.1136/jnnp-2022-329680
https://dx.doi.org/10.1136/jnnp-2022-329680
https://dx.doi.org/10.1136/jnnp-2022-329680
https://dx.doi.org/10.1136/jnnp-2022-329680
https://www.applied-statistics.de/lst.html
http://jnnp.bmj.com/


3Wei R, et al. J Neurol Neurosurg Psychiatry 2022;0:1–7. doi:10.1136/jnnp-2022-329680

Multiple sclerosis

Performance of the brain age prediction model
Model training (using 9794 HCs) was terminated at epoch 
108. The mean absolute error (MAE) before inverse linear bias 
correction was 2.63 years in the developmental validation set, 
and this model was used as the final model for further analysis.

The model was then tested using 462 images for internal 
(across- scanner) validation and 267 images for external valida-
tion (across- centre). In the internal validation dataset, the MAE 
was 2.9±3.1 years, with no significant difference across scanner 
types (p=0.581, n=2). The Pearson’s correlation coefficient (r) 
between age and brain age was 0.957. In the external validation 
set, the MAE was 4.5±3.9 years, and the Pearson’s r was 0.890. 
The MAE was not significantly different across different centres 
(p=0.660, n=5; online supplemental table 2).

Increased BAG in NMOSD and RRMS compared with healthy 
controls
The difference in BAG among patients with NMOSD, patients 
with RRMS and HCs was relatively consistent across base-
line chronological ages (figure 1A). At baseline, patients with 
NMOSD had a significantly higher BAG than HCs (NMOSD−
HC=4.6 years, 95% CI 2.4 to 6.9, p<0.001), but patients with 
RRMS had a markedly higher BAG than HCs (MS−HC=12.1 
years, 95% CI 9.9 to 14.3, p<0.001). BAG was lower in 
NMOSD than in RRMS (NMOSD−RRMS=−7.5 years, 95% 
CI 5.2 to 9.9, p<0.001) (table 1, figure 1B).

Furthermore, we performed subgroup analyses of BAG in 
AQP4 seropositive versus seronegative patients with NMOSD, 
as well as in patients with NMOSD with versus without brain 
lesions. We observed that there was no significant difference in 
BAG between the AQP4 seropositive and seronegative subgroups 

(5.8±8.8 vs 4.2±6.9 years, p=0.256). However, the BAG in 
patients with brain lesions was significantly higher than those 
without (7.1±8.5 vs 3.4±7.2 years, p=0.001) (online supple-
mental table 5).

A significant difference in BAG across centres (p<0.001) was 
noted, although post hoc analysis revealed consistent trends in 
disease effects on BAG in all six centres (figure 1C). Sample 
images and the corresponding output from both the NMOSD 
and RRMS groups were provided for better understanding 
(figure 1D–G).

The correlation between raw and lesion- filled 3D T1WI 
images was very high (R2=0.984, p<0.001, online supplemental 
figure 3A). A Bland- Altman plot showed that the mean differ-
ence between raw and lesion- filled brain age was 0.28±2.11 
years with no apparent systematic bias (online supplemental 
figure 3B), indicating that the lesion filling process did not have 
a particular impact on the model.

Correlation of BAG with clinical variables
At baseline, univariate linear regression analysis demon-
strated that BAG was positively associated with EDSS in both 
the NMOSD and RRMS groups (NMOSD r=0.217, β=0.86, 
p=0.002; RRMS r=0.268, β=2.31, p<0.001; figure 2A). 
Normalised brain volume was inversely associated with BAG 
in both NMOSD and RRMS groups (NMOSD r=−0.202, 
β=−48.5, p<0.001; RRMS r=−0.384, β=−126.9, p<0.001; 
figure 2B). Multivariable linear regression found that BAG was 
positively predictive of baseline EDSS independent of normalised 
brain volume and disease duration (NMOSD p=0.030; RRMS 
p=0.009; online supplemental table 3).

Table 1 Demographic characteristics, baseline status and deep learning- derived brain age of participants

NMOSD RRMS HCs P value

Baseline

  N 199 200 269

  Age at baseline, year (min–max) 41.0±13.0 (16.9–66.0) 37.1±11.4 (16.6–66.9) 38.5±12.7 (17.0–69.0) NMOSD versus HC 0.071
RRMS versus HC 0.468
NMOSD versus RRMS 0.005

  Female, n (%) 176/199 (88.4) 128/200 (64.0) 152/269 (56.5) <0.001

  Seropositive for AQP4- IgG, n (%) 84/132 (63.6) – – –

  First onset to diagnosis, year (min–max) 4.5±5.1 (0.0–35.0) 3.2±4.4 (0.0–21.0) – 0.006

  Baseline use of DMT, n (%) 52 (26.1%) 86 (43.0%) – –

  EDSS at baseline, median (IQR) (min–
max)

2.0 (2.0) (0.0–9.0) 3.5 (3.0) (0.0–9.0) – <0.001

  Brain segmentation volume without 
ventricles, mL (min–max)

1058.9±94.4 (798.7–1390.1) 1080.1±121.5 (742.6–1484.5) 1154.6±98.5 (910.7–1434.0) NMOSD versus HC <0.001
MS versus HC <0.001
NMOSD versus RRMS 0.108

  Normalised brain volume (min–max) 0.750±0.038 (0.647–0.891) 0.731±0.045 (0.590–0.858) 0.765±0.030 (0.700–0.894) <0.001*

  Total volume of lesion, mL (min–max) 4.9±8.1 (0.0–43.9) 12.7±17.9 (0.0–134.0) – <0.001*

Deep learning- derived brain age

  Predicted brain age, year (min–max) 46.4±16.0 (18.8–77.5) 49.8±17.5 (19.5–77.8) 39.3±13.7 (14.8–73.8) <0.001*

  Brain age gap, year (95% CI) 5.4±8.2 (4.3 to 6.5) 13.0±14.7 (10.9 to 15.0) 0.8±6.2 (0.1 to 1.6) <0.001*

  Predicted brain age SD, year (95% CI) 6.0±3.0 (5.6 to 6.5) 7.2±4.2 (6.6 to 7.8) 4.8±1.1 (4.7 to 4.9) <0.001*

Follow- up

  N with follow- up data, n (%) 85 (42.7) 124 (62.0) –

  Mean follow- up time, year (min–max) 5.8±1.9 (1.9–9.9) 5.2±1.7 (1.5–9.2) – 0.020

  EDSS worsening, n (%) 31 (36.5) 42 (33.9) – 0.764

Continuous variables other than EDSS are reported as the mean±SD. EDSS is reported as the median (IQR).
*For all pairwise comparisons, that is, for NMOSD versus HC, RRMS versus HC and NMOSD versus RRMS.
DMT, disease- modifying therapy; EDSS, Expanded Disability Status Scale; HC, healthy control; MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorder; RRMS, 
relapsing- remitting multiple sclerosis.
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We performed 1:1 nearest neighbour propensity score 
matching (PSM)18 to exclude the possible confounding influence 
of clinical variables on BAG. This matching yielded adequate 
balance for all included coefficients. The mean BAG was 5.0±7.1 
years in NMOSD and 11.1±12.7 years in RRMS after adjust-
ment for sex, age at diagnosis, baseline EDSS and normalised 
brain volume, with an estimated difference of −6.1 years (95% 
CI −8.7 to −3.4) years between NMOSD and RRMS (table 2).

The area under the curve of the receiver operating character-
istic for BAG in predicting progression was 0.599 in NMOSD 
and 0.670 in RRMS. The optimal cut- off of BAG was 6.1 (sensi-
tivity 38.7%, specificity 81.5%) for NMOSD and 24 (sensitivity 
50.0%, specificity 80.5%) for RRMS (online supplemental 
figure 4). Kaplan- Meier survival analysis indicated that BAG 
was predictive of progression in both groups. For patients with 
NMOSD, the median time to progression for BAG >6.1 years 
was 5.79 years vs 7.99 years for BAG ≤6.1 years (p=0.003, 
figure 2C). The median time to progression for BAG >24.0 

years was 5.36 years vs 8.95 years for BAG ≤24.0 years in 
patients with RRMS (p=0.002, figure 2D).

We used the Cox proportional hazards model to investigate 
whether BAG could be used to predict time to EDSS wors-
ening independent of age at diagnosis, sex, disease duration, 
baseline EDSS and normalised brain volume. In univariate 
models, normalised brain volume and BAG were signifi-
cantly associated with EDSS worsening in both patients with 
NMOSD and RRMS (table 3, univariate model). In a multi-
variable model, BAG was associated with EDSS worsening in 
patients with NMOSD (HR=1.02 (95% CI 1.00 to 1.04)). 
p=0.027, table 3), independent of normalised brain volume 
(p=0.158). However, neither normalised brain volume nor 
BAG was significant in the RRMS group in multivariable anal-
ysis. Interestingly, we found baseline EDSS to be negatively 
associated with EDSS worsening in NMOSD (multivariable 
model p=0.001, table 3).

Figure 1 Deep learning- derived brain age versus chronological age in 
neuromyelitis optica spectrum disease (NMOSD), multiple sclerosis (MS) 
and healthy control (HC). (A) Deep learning- derived brain age versus 
chronological age in NMOSD, MS and HC groups. Predicted brain age is 
consistently higher in NMOSD and MS groups compared with HC group. 
(B) Patients with NMOSD exhibits lower brain age gap (BAG) over MS and 
lower BAG over HCs. (C) The difference of BAG across centres in NMOSD, 
MS and HC groups. The tendency that MS BAG>NMOSD BAG>HC BAG 
remains consistent even if there are significant differences across centres. 
(D, E, F, G) A sample input and prediction result of patients with NMOSD 
and MS. Solid line indicates brain age estimation and dashed lines indicate 
SD of prediction. The predicted brain age was 42.0±5.1 years for (D) and 
70.0±7.2 years for (E), yielding BAG of 6.0 years and 42.0 years namely. 
Both (D) and (E) experienced disability progression in follow- up sessions. 
Predicted brain age for (F) and (G) was 39.2±5.6 years and 66.1±4.4 
years yielding BAG of −1.8 years and 12.1 years namely. These patients 
with lower BAG did not experience disability progression within follow- up 
period. EDSS, Expanded Disability Status Scale.

Figure 2 Correlation of brain age gap (BAG) with clinical variables and 
its prognostic value. (A) Increased BAG was associated with more severe 
baseline disability status in both neuromyelitis optica spectrum disease 
(NMOSD), multiple sclerosis (MS), which was more prominent in patients 
with MS. (B) Normalised brain volume was strongly negatively associated 
with BAG both in NMOSD and MS indicating possible contribution of 
atrophy in increased BAG. (C, D) Survival curve of BAG predicting disability 
progression in patients with NMOSD and MS. Cut- off point was determined 
by 80% specificity. Operating cut- off point for NMOSD is set to BAG >6.1 
(sensitivity 38.7%, specificity 81.5%), MS is set to BAG >24.0 (sensitivity 
50.0%, specificity 80.5%).

Table 2 Patients with NMOSD exhibit lower brain age gap over 
RRMS adjusted for sex, age at diagnosis, baseline EDSS and normalised 
brain volume with propensity score matching

NMOSD RRMS P value

N 119 119 –

Age at diagnosis, years 39.6±13.2 39.9±11.7 0.855

Female, n (%) 96 (80.7) 97 (81.5) 1.000

First onset to diagnosis, year 3.8±4.0 3.5±5.1 0.661

EDSS at baseline, median (IQR) 2.5 (2.0) 2.5 (2.0) 0.300

Normalised brain volume 0.745±0.038 0.742±0.042 0.538

Predicted brain age 44.5±15.5 50.0±16.9 0.008

Brain age gap 5.0±7.1 11.1±12.7 <0.001

Continuous variables other than EDSS are reported as the mean±SD. EDSS is 
reported as the median (IQR).
EDSS, Expanded Disability Status Scale; NMOSD, neuromyelitis optica spectrum 
disorder; RRMS, relapsing- remitting multiple sclerosis.
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Analysis of predicted SD in brain age prediction
The predicted SD was positively associated with BAG in all three 
groups (linear model p<0.001 in HC and NMOSD, p=0.011 
in RRMS, online supplemental figure 5A). The mean SD in 
NMOSD was higher than HC and lower than RRMS (online 
supplemental figure 5B), which was consistent with the trend 
seen in BAG, indicating a higher model uncertainty in those 
images with greater discrepancy between apparent and chrono-
logical age. We examined scans with high model uncertainty 
and found that some of them could be attributed to low image 
quality or incomplete anatomical coverage (online supplemental 
figure 5C), while others were not visually distinguishable from 
those with lower model uncertainty (online supplemental figure 
5D). To analyse whether the difference in BAG was driven by the 
difference in predicted SD, we performed PSM with predicted 
SD added as a covariate. The difference in BAG between 
NMOSD and RRMS, as well as NMOSD and RRMS versus HC, 
remained statistically significant after PSM adjusted for age, sex, 
duration to diagnosis, baseline EDSS, normalised brain volume 
and predicted SD (p<0.001, online supplemental table 4).

DISCUSSION
In this study, we developed a deep learning model to accurately 
predict age from 3D structural MRI scans and demonstrated 
its robustness in the context of multiple centres and MRI scan-
ners. Using this model, the BAG was estimated to be approxi-
mately +5 years in NMOSD and +13 years in RRMS. Baseline 
BAG was independently predictive of EDSS worsening in both 
NMOSD and RRMS, suggesting its additional clinical value as 
a non- invasive biomarker for early triage, stratified follow- up 
management and clinical trial enrolment.

Previous non- deep learning studies on age prediction 
tasks reported 2.9- year to 5.0- year MAEs on their valida-
tion sets7 19 20 (some of which included multimodality- derived 
features, including functional MRI and diffusion tensor imaging), 
while deep learning studies reported validation MAEs as low as 
2.14 years, such as in the original SFCN study.17 We reached 
similar performance levels of MAE=2.5 years in the develop-
mental validation set, and the performance was maintained in an 
internal test set, demonstrating the usefulness of our model and 
highlighting the versatility and potential of deep learning- based 
methods. We have also shown that the whole- brain CNN- based 
model was robust within scanners and centres, supporting the 
clinical use of the brain age paradigm.

BAG has been investigated extensively as a comprehensive 
biomarker for accelerated ageing. Increased BAG has been 

observed in dementia,21 epilepsy22 and traumatic brain injury.23 
We report for the first time the meaningfulness of BAG in 
NMOSD as well as the difference between NMOSD and RRMS. 
We found a BAG of 5.4 (95% CI 4.3 to 6.5) years in patients with 
NMOSD, which, although lower than RRMS, is still marked 
compared with HCs. The degree of BAG increase in NMOSD 
is similar to what has been reported in epilepsy (4.5 years)22 and 
traumatic brain injury (4.7 years).23

BAG in NMOSD was positively associated with baseline EDSS 
score and whole- brain atrophy, with associations comparable to 
those in RRMS but with a generally less steep slope. BAG was 
also predictive of EDSS worsening in NMOSD, which is in line 
with the idea that BAG is a composite marker of abnormal ageing 
and a disease- related brain. Furthermore, subgroup analysis of 
patients with NMOSD demonstrated that the BAG of patients 
with brain lesions was significantly higher than those without. 
This indicates that lesional brain involvement is associated with 
older appearing brains in patients with NMOSD. Future longi-
tudinal studies are required to determine the possible causative 
factors.

In a recent study of brain age using Gaussian processes 
regression on MS, the authors reported 11.9 (95% CI 10.3 to 
13.4) years BAG in patients with MS in the European Magnetic 
Resonance Imaging in Multiple Sclerosis (MAGNIMS) cohort,7 
which is consistent with our result of 13.0 (95% CI 10.9 to 15.0) 
years BAG in Chinese patients with MS. Furthermore, increased 
BAG was predictive of EDSS worsening in MS, also consistent 
with previous work.7 Even though we used a fundamentally 
different methodology and datasets, these results provide addi-
tional evidence for the usefulness of BAG in the evaluation of 
patients with MS. Moreover, using deep learning can substan-
tially shorten the runtime of the analysis pipeline. This accel-
eration in computation time is potentially of great benefit for 
widespread application in a clinical setting.

Comparing NMOSD and MS is difficult given the difference 
in confounding factors that may influence BAG. It has been 
reported previously that the atrophy patterns in NMOSD and 
MS are different. NMOSD exhibits more atrophy in the spinal 
cord but less atrophy in the brain,24 which can partially explain 
the lower BAG in NMOSD given the strong association between 
BAG and brain atrophy. To address the influence of confounding 
effects such as demographics and brain volume, we used propen-
sity score matching to sample a subset with matched baseline 
confounding factors. In this matched subset, the difference in 
BAG between NMOSD and MS was still significantly different 
even when matched for normalised brain volume. This finding 

Table 3 Univariable and multivariable Cox proportional hazards model analysis for predicting EDSS worsening by BAG, age at diagnosis, sex, 
duration between first onset to diagnosis, baseline EDSS and normalised brain volume

Univariable Multivariable

NMOSD RRMS NMOSD RRMS

HR P value HR P value HR P value HR P value

N 85 124 85 124

Number of events, n (%) 31 (36.5) 42 (33.9) 31 (36.5) 42 (33.9)

Age at diagnosis, years 1.04 (1.00 to 1.08) 0.032 0.99 (0.96 to 1.02) 0.540 1.02 (0.98 to 1.06) 0.398 –

Sex, male 0.52 (0.07 to 3.90) 0.527 1.23 (0.65 to 2.34) 0.523 – –

First onset to diagnosis, year 0.97 (0.89 to 1.05) 0.416 1.00 (0.91 to 1.11) 0.890 – –

EDSS at baseline 0.68 (0.54 to 0.85) <0.001 0.91 (0.73 to 1.12) 0.364 0.65 (0.50 to 0.83) 0.001 –

Normalised brain volume (%) 0.90 (0.81 to 1.00) 0.049 0.91 (0.85 to 0.98) 0.009 0.92 (0.81 to 1.04) 0.158 0.92 (0.85 to 1.02) 0.107

Brain age gap, year 1.06 (1.00 to 1.13) 0.031 1.02 (1.00 to 1.04) 0.029 1.07 (1.01 to 1.14) 0.027 1.02 (0.98 to 1.04) 0.633

EDSS, Expanded Disability Status Scale; NMOSD, neuromyelitis optica spectrum disorder; RRMS, relapsing- remitting multiple sclerosis.
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indicates that the brains of patients with RRMS appear older 
than those of patients with NMOSD even at the same level of 
atrophy, implying that BAG can be seen as a global estimation 
that integrates information beyond simple brain volumetry while 
being more accessible and informative than tables of volumetric 
measurements.

The uncertainty and distributional pattern of predicted brain 
age is an important field of research that has attracted little 
attention. A recent study modelled brain age uncertainty with a 
single- layer neural network that addressed aleatoric uncertainty 
with quantile regression and epistemic uncertainty with the 
Monte Carlo dropout technique.25 In contrast to other studies 
that use quantile regression, the novel method in our study 
renders aleatoric uncertainty a natural derivative since the model 
output itself is a distribution instead of the point estimate used 
in previous studies.4 Epistemic uncertainty was not derived in 
this study due to computational cost. Although the uncertainty 
correlated positively with BAG, the PSM analysis indicated that 
the BAG difference between NMOSD and RRMS remained 
statistically significant even after adjustment for predicted 
SD. We observed that the predicted SD were higher in those 
scans without enough information for brain age inference (ie, 
low image quality, etc), and in those with a greater discrepancy 
between predicted and actual age. This observation suggests a 
potential use case for the predicted SD. The quantification of 
individual- level uncertainty in this way could provide an inte-
grated, intuitive metric for image quality control, especially in 
healthy people, as well as provide a measure of ‘confidence’ for 
applications in clinical contexts.

Our study has a few limitations. First, the follow- up duration 
was relatively short, and the sample size of patients with follow- up 
was small, which may have introduced selection bias. Second, 
although previous studies have suggested the longitudinal utility 
of brain age in healthy cohorts6 and accelerated ageing measured 
by BAG has been observed in MS cohorts,7 our cohort lacked 
sufficient follow- up assessments for this type of analysis. Finally, 
the interpretability of the results needs to be further improved; 
specifically, the anatomical meaning of brain age remains ill- 
defined. Deep learning- based methods have been cast as ‘black 
boxes’; however, tools such as class activation mapping, guided 
backpropagation and occlusion analysis are emerging that aim to 
extract mechanistic information from the network.26 However, 
the translation of these methods to 3D data is complex, and they 
have yet to be validated for use in interpreting medical imaging 
data. Additionally, our study relied on 3D T1WI MRI, which is 
not always available in clinical contexts. Future work will take 
advantage of brain age models developed to work on routine 
clinical two- dimensional scans.27

In conclusion, NMOSD demonstrated a significant BAG 
compared with HCs, although less marked than RRMS. BAG 
is a predictive biomarker of EDSS worsening in both NMOSD 
and RRMS.
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