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a b s t r a c t 

Convolutional neural networks (CNNs) have achieved state-of-the-art performance for white matter (WM) 

tract segmentation based on diffusion magnetic resonance imaging (dMRI). The training of the CNN-based 

segmentation model generally requires a large number of manual delineations of WM tracts, which can 

be expensive and time-consuming. Although it is possible to carefully curate abundant training data for 

a set of WM tracts of interest, there can also be novel WM tracts—i.e., WM tracts that are not included 

in the existing annotated WM tracts—that are specific to a new scientific problem, and it is desired that 

the novel WM tracts can be segmented without repeating the laborious collection of a large number of 

manual delineations for these tracts. One possible solution to the problem is to transfer the knowledge 

learned for segmenting existing WM tracts to the segmentation of novel WM tracts with a fine-tuning 

strategy, where a CNN pretrained for segmenting existing WM tracts is fine-tuned with only a few anno- 

tated scans to segment the novel WM tracts. However, in classic fine-tuning, the information in the last 

task-specific layer for segmenting existing WM tracts is completely discarded. In this work, based on the 

pretraining and fine-tuning framework, we propose an improved transfer learning approach to the seg- 

mentation of novel WM tracts in the few-shot setting, where all knowledge in the pretrained model is 

incorporated into the fine-tuning procedure. Specifically, from the weights of the pretrained task-specific 

layer for segmenting existing WM tracts, we derive a better initialization of the last task-specific layer 

for the target model that segments novel WM tracts. In addition, to allow further improvement of the 

initialization of the last layer and thus the segmentation performance in the few-shot setting, we de- 

velop a simple yet effective data augmentation strategy that generates synthetic annotated images with 

tract-aware image mixing. To validate the proposed method, we performed experiments on brain dMRI 

scans from public and private datasets under various experimental settings, and the results indicate that 

our method improves the performance of few-shot segmentation of novel WM tracts. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

White matter (WM) tract segmentation based on diffusion mag- 

etic resonance imaging (dMRI) identifies anatomical WM pathways 

hat connect brain regions of interest ( Yeatman et al., 2012; Zhang 

t al., 2020; Chandio et al., 2020 ). It provides a useful quantitative 

ool for the analysis of brain characteristics ( O’Donnell and Paster- 

ak, 2015; Mueller et al., 2015; Vanderweyen et al., 2020 ) and fa- 

ilitates the studies on brain development, function, and disease. 

or example, in Jaimes et al. (2020) , the development of specific 
∗ Corresponding authors. 

E-mail addresses: chuyang.ye@bit.edu.cn (C. Ye), liuyaou@bjtth.org (Y. Liu) . 
1 Co-first authors. 
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M tracts in the fetal brain is found to be associated with known 

ellular processes that occur during pregnancy, and the tissue mi- 

rostructure of these WM tracts allows the discrimination of nor- 

al and abnormal development with high anatomical specificity. 

n Hula et al. (2020) , arcuate and middle longitudinal fasciculi are 

egmented and analyzed, and the results challenge the well-known 

ual-stream model of language function. In Toescu et al. (2021) , 

t is observed that damage to the dentato-rubro-thalamo-cortical 

ract is implicated in cerebellar mutism syndrome, and the novel 

nsights can offer important information for the surgical resection 

f cerebellar tumors. 

WM tracts can be reconstructed from dMRI using the tech- 

ique of fiber tracking or tractography ( Basser et al., 20 0 0; Poulin 

t al., 2019 ), where the tracts are represented as 3D fiber stream- 

https://doi.org/10.1016/j.media.2022.102454
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2022.102454&domain=pdf
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ines. Specific WM tracts can be segmented manually by selecting 

he fiber streamlines according to the knowledge of experts and 

rouping the selected streamlines into fiber bundles ( Stieltjes et al., 

013; Thiebaut de Schotten et al., 2011 ). However, the manual se- 

ection is laborious and subjective, and the reproducibility of man- 

al WM tract segmentation can be poor. Therefore, it is highly de- 

ired to develop automated WM tract segmentation approaches for 

euroimaging studies. 

Previous works have automatically classified the fiber stream- 

ines into anatomically defined WM tracts according to the regions 

f interest (ROIs) through which the streamlines pass ( Cook et al., 

005; Wassermann et al., 2016 ) or reference streamlines defined in 

treamline atlases ( O’Donnell and Westin, 2007; Garyfallidis et al., 

018; Wu et al., 2020 ). An alternative automated strategy is to di- 

ectly assign tract labels to the voxels in a dMRI scan based on 

he anatomical prior knowledge and diffusion features. Since vox- 

ls are directly labeled without necessarily performing fiber track- 

ng, we refer to this type of WM tract segmentation approaches 

s volumetric WM tract segmentation ( Lu et al., 2021 ). For exam- 

le, a volumetric tract atlas can be registered nonlinearly to test 

cans using maps of diffusion features to obtain the segmentation 

esults ( Oishi et al., 2009 ). More advanced approaches use machine 

earning techniques, such as Markov random fields, random forests, 

r k -nearest neighbors, to label the voxels ( Bazin et al., 2011; Ye

t al., 2015; Ratnarajah and Qiu, 2014 ). 

Recently, convolutional neural networks (CNNs) have been suc- 

essfully applied to WM tract segmentation with remarkably im- 

roved performance ( Zhang et al., 2020; Wasserthal et al., 2018; 

i et al., 2020 ). Like earlier WM tract segmentation approaches, 

hese CNN-based methods either classify the fiber streamlines into 

ber bundles or directly label the voxels according to the WM 

racts to which they belong. For example, Zhang et al. (2020) have 

esigned a feature map named FiberMap for each fiber stream- 

ine, and a CNN is trained based on FiberMap to perform fiber 

treamline classification. Wasserthal et al. (2018) use the strategy 

f volumetric WM tract segmentation, where a CNN named Tract- 

eg is trained to predict the tract labels of each voxel from in- 

ut fiber orientation maps. A similar volumetric strategy is pro- 

osed in Li et al. (2020) , and a 3D CNN named Neuro4Neuro is

sed to label the voxels directly with the input of diffusion tensor 

mages. 

As in other image processing tasks, the success of CNNs in 

M tract segmentation relies on abundant annotated training 

cans. However, manually delineating WM tracts on a large num- 

er of dMRI scans can be very time-consuming and costly. Al- 

hough the training data can be carefully curated and accumu- 

ated throughout time for a set of WM tracts of interest for a 

tudy ( Wasserthal et al., 2018 ), there can still be novel WM tracts—

.e., WM tracts that are not included in the existing annotated WM 

racts—that are to be analyzed in a new scientific problem ( Toescu 

t al., 2021; MacNiven et al., 2020; Banihashemi et al., 2021 ). Re- 

eating the labor-intensive collection of tract annotations on a 

arge number of scans for each new study involving novel WM 

racts can be prohibitive, and it is desired that the segmentation 

f novel WM tracts can be accurately performed with only a few 

ases of annotations for the novel WM tracts. 

One possible solution to the problem described above is to 

ransfer the knowledge learned with the abundant annotated data 

ollected previously for segmenting existing WM tracts to the seg- 

entation of novel WM tracts. In this case, even with only a few 

anual delineations of novel WM tracts, the CNN can learn ade- 

uate knowledge for the segmentation of novel WM tracts. Intu- 

tively, a fine-tuning strategy can be used for the purpose, where a 

NN is pretrained to segment the existing WM tracts and it is then 

ne-tuned to obtain the target model that segments the novel WM 

racts. In classic fine-tuning ( Tajbakhsh et al., 2016 ), the weights in 
2 
he feature extraction layers of the pretrained CNN are copied for 

nitializing the corresponding layers of the target model, whereas 

he last task-specific layer of the target model is randomly ini- 

ialized. Then, all weights of the target model are jointly learned 

ith the limited amount of training data that is available for the 

arget task. It is also possible to transfer the knowledge from a 

ource task without a pretrained model ( Roy et al., 2020; Feng 

t al., 2021 ). However, this type of method requires the access to 

he training data collected for the source task, which may some- 

imes be impractical due to privacy concerns in medical imag- 

ng ( Burton et al., 2015 ), whereas the access to pretrained models 

s less of a concern. Therefore, in this work we focus on the use 

f the pretraining and fine-tuning framework for the few-shot seg- 

entation of novel WM tracts. 

Although the classic fine-tuning strategy can be used for the 

ew-shot segmentation of novel WM tracts, it completely discards 

he information in the last task-specific layer of the pretrained 

odel for segmenting the existing WM tracts. Since different WM 

racts can be correlated due to tract crossing or overlapping, the 

iscarded layer may also bear valuable information that is relevant 

o the novel WM tracts, and thus classic fine-tuning may be sub- 

ptimal. Therefore, in this work, we further explore the knowledge 

ransfer from the segmentation of existing WM tracts and propose 

 transfer learning approach to the segmentation of novel WM 

racts in the few-shot setting. As described above, we focus on the 

cenario where the model pretrained for segmenting existing WM 

racts is available, but the access to the training data collected for 

xisting WM tracts is not guaranteed. In addition, we focus on vol- 

metric WM tract segmentation because it does not require per- 

orming tractography, the result of which can be sensitive to the 

hoice of tracking algorithms and hyperparameters ( Zhang et al., 

021 ). 

Specifically, we assume that the novel WM tracts can be pre- 

icted with the logits—the unnormalized predictions before the fi- 

al activation function—of existing WM tracts. For simplicity, we 

ormulate the prediction as a logistic regression problem, and 

ased on this formulation, we derive a better initialization of the 

ast task-specific layer for segmenting the novel WM tracts using 

he information in the last task-specific layer pretrained for ex- 

sting WM tracts. For the feature extraction layers, like in classic 

ne-tuning the knowledge transfer is still performed by copying 

he weights pretrained for existing WM tracts for initialization. In 

his way, all knowledge learned for segmenting existing WM tracts 

an be transferred to the segmentation of novel WM tracts. More- 

ver, we show that the derivation of the better initialization of the 

ast layer motivates a more adaptive initialization strategy, which 

an be simply achieved by inserting a warmup stage before classic 

ne-tuning. In addition to the improved knowledge transfer strat- 

gy, to allow further improvement of the initialization of the last 

ayer and thus the segmentation performance in the few-shot set- 

ing, we propose to better exploit the information in the scarce 

nnotations of novel WM tracts and develop a simple yet effective 

ata augmentation strategy TractMix. In TractMix, synthetic anno- 

ated images are generated from the real annotated scans with 

ract-aware image mixing, and the mixing can also vary with dif- 

erent combinations of novel WM tracts to increase the diversity of 

he synthetic annotated data. These synthetic images are used to- 

ether with the real annotated images in network training to fur- 

her improve the initialization of the last layer for segmenting the 

ovel WM tracts. 

To validate the proposed method, we performed experi- 

ents on the publicly available Human Connectome Project (HCP) 

ataset ( Van Essen et al., 2013 ) and a private dataset comprising 

oth healthy control (HC) subjects and patients with Alzheimer’s dis- 

ase (AD). The segmentation performance was evaluated under var- 

ous experimental settings, and the results show that our method 
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mproves the quality of the segmentation of novel WM tracts given 

nly a few annotated training images. 

A preliminary version of this work has been presented at IPMI 

021 ( Lu and Ye, 2021 ). Compared with the conference version, in 

he current manuscript we have described the proposed method- 

logy with more details and have further developed TractMix that 

enerates additional synthetic training data to improve the seg- 

entation performance. In addition, we have performed a more 

omprehensive evaluation of the proposed method, where addi- 

ional experimental settings and an additional dataset have been 

onsidered. In particular, using the additional private dataset, we 

how that the proposed method can be applied when domain 

hift ( Ganin and Lempitsky, 2015 ) exists between the data used for 

egmenting existing and novel WM tracts and it is applicable to 

oth HC subjects and AD patients. 

The remaining of the paper is organized as follows. 

ection 2 describes the proposed approach to the segmenta- 

ion of novel WM tracts in the few-shot setting. Section 3 presents 

he results on the public and private datasets under various ex- 

erimental settings. In Section 4 , we discuss the results and future 

orks. Finally, Section 5 summarizes the proposed work. 

. Methods 

In this section, we first formulate the problem of segment- 

ng novel WM tracts and introduce classic fine-tuning. Then, we 

resent the proposed transfer learning approach to few-shot seg- 

entation of novel WM tracts, as well as how this approach moti- 

ates a better implementation. In addition, we describe how to fur- 

her benefit the transfer learning by better exploiting the few an- 

otated scans with data augmentation achieved by tract-aware im- 

ge mixing. Finally, we introduce the backbone CNN for WM tract 

egmentation and describe the implementation details. 

.1. Problem formulation and classic fine-tuning 

Suppose we are given a CNN-based segmentation model pre- 

rained with abundant annotations for segmenting a set of WM 

racts, which, for convenience, are referred to as existing WM 

racts. We are interested in the segmentation of a novel set of WM 

racts that are not included in the training set of the given model. 2 

nly a few annotations are available for these novel WM tracts 

ecause delineations of WM tracts are generally labor-intensive. 

ur goal is to achieve decent segmentation accuracy for the novel 

M tracts with the scarce annotations. To achieve such a goal, 

 common practice is to transfer the knowledge learned for seg- 

enting existing WM tracts in the given model to the segmen- 

ation of novel WM tracts. Typically, a classic fine-tuning strat- 

gy ( Tajbakhsh et al., 2016 ) can be used to perform the knowledge

ransfer, and its mathematical formulation is given below. 

We denote the network models for segmenting existing and 

ovel WM tracts by M e and M n , respectively. In classic fine- 

uning, M e and M n share the same network structure except for 

he last task-specific layer. We denote the task-specific weights in 

he last layer L e of M e and the last layer L n of M n by θe and θn ,

espectively, and the other weights in M e or M n are denoted by 

. Suppose the input image is X ; from X a multi-channel feature 

ap F is computed with a mapping f (X ; θ) parameterized by θ: 

 = f (X ; θ) , (1) 

nd the segmentation probability map P e or P n for existing or 

ovel WM tracts is computed from F with L e or L n using another 
2 Following the terminology that is commonly used in few-shot learning ( Li et al., 

019; Lifchitz et al., 2019 ), we use the word “novel” to represent new classes of WM 

racts. 

s

b  

t

t  

3 
apping g e (F ; θe ) or g n (F ; θn ) parameterized by θe or θn , respec- 

ively: 

 e = g e (F ; θe ) = g e ( f (X ; θ) ; θe ) and P n = g n (F ; θn ) 

= g n ( f (X ; θ) ; θn ) . (2) 

In classic fine-tuning, instead of directly training M n from 

cratch—i.e., θ and θn are randomly initialized—using the scarce 

nnotations of novel WM tracts, the information in M e can be 

xploited. Since M e is trained by minimizing the difference be- 

ween P e and the abundant annotations of existing WM tracts, 

he learned values ˜ θ of the weights θ for segmenting existing 

M tracts can provide useful information about feature extraction. 

hus, ˜ θ is used to initialize θ for training M n , and only θn is ran- 

omly initialized. In this way, the knowledge learned for segment- 

ng existing WM tracts in the pretrained model M e can be trans- 

erred to the segmentation of novel WM tracts, and this classic 

ne-tuning strategy has been effectively applied to various med- 

cal image analysis tasks ( Tajbakhsh et al., 2016 ). 

.2. Improved knowledge transfer for few-shot segmentation of novel 

M tracts 

Although the classic fine-tuning strategy can be used for the 

ew-shot segmentation of novel WM tracts, it completely discards 

he information about the weights θe in the last layer L e learned 

or existing WM tracts. Since WM tracts are known to co-occur 

s crossing or overlapping fiber tracts in a considerable number of 

oxels ( Ginsburger et al., 2019; Maier-Hein et al., 2017 ), different 

M tracts can be correlated. Thus, we hypothesize that the infor- 

ation in the discarded weights that produce the segmentation re- 

ults for existing WM tracts could also be relevant to the segmen- 

ation of novel WM tracts. More specifically, we assume that the 

ovel WM tracts could be predicted from the existing WM tracts, 

nd this assumption allows us to exploit the discarded information 

n L e as well for training M n , so that the knowledge transfer for 

he few-shot segmentation of novel WM tracts can be improved. 

he derivation of the improved knowledge transfer is described be- 

ow. 

Suppose P 

v 
e and P 

v 
n are the vectors of segmentation proba- 

ilities at the v -th voxel of P e and P n , respectively, where v ∈
 1 , 2 , . . . , V } and V is the total number of voxels. Each entry in P 

v 
e 

r P 

v 
n represents the segmentation result of a tract at voxel v . In

xisting segmentation networks, L e and L n generally use a con- 

olution with a kernel size of one to classify each voxel (e.g., 

ee Wasserthal et al. (2018) ), which is equivalent to matrix mul- 

iplication (plus a bias vector) at each voxel. Therefore, we rewrite 

he task-specific weights as θe = { W e , b e } and θn = { W n , b n } , so

hat the segmentation probabilities can be explicitly expressed as 

 

v 
e = σ

(
W e F 

v + b e 

)
and P 

v 
n = σ

(
W n F 

v + b n 

)
. (3) 

ere, F v represents the feature vector at the v -th voxel of the fea-

ure map F , and σ (·) is the channel-wise sigmoid activation be- 

ause there can be multiple WM tracts in a single voxel. 

In classic fine-tuning the information about W e and b e is com- 

letely discarded. However, according to our assumption, it is pos- 

ible to exploit W e and b e to provide a better initialization for W n 

nd b n . To this end, we investigate the prediction of novel WM 

racts with the logits H e of existing WM tracts—i.e., the intermedi- 

te output of L e before the sigmoid activation—given by the trained 

 e . For simplicity, this prediction is achieved with logistic regres- 

ion. We denote the logit vector at voxel v given by the trained M e 

y H 

v 
e = (h v 

e , 1 
, . . . , h v 

e ,M 

) T , where M is the number of existing WM

racts. Suppose the total number of novel WM tracts is N; then 

he prediction p v 
e → n , j 

of the j-th ( j ∈ { 1 , . . . , N} ) novel WM tract at
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oxel v from the information of existing WM tracts is given by 

p v e → n , j = 

1 

1 + exp 

(
−(b j + 

∑ M 

i =1 w i j h 

v 
e ,i 

) 
) , (4) 

here w i j and b j are the regression parameters to be determined. 

Combining the prediction of all novel WM tracts at voxel v into 

 vector P 

v 
e → n = (p v 

e → n , 1 
, . . . , p v 

e → n ,N 
) T , we simply have 

 

v 
e → n = σ

(
WH 

v 
e + b 

)
, (5) 

here 

 = 

⎡ ⎣ 

w 11 · · · w 1 M 

. . . 
. . . 

. . . 
w N1 · · · w NM 

⎤ ⎦ and b = [ b 1 , . . . , b N ] 
T 
. (6) 

ote that H 

v 
e = 

˜ W e ̃
 F v + ̃

 b e , where ̃  F v corresponds to the v -th voxel 

f ˜ F = f (X ; ˜ θ) that is computed with the weights ˜ θ learned for 

egmenting existing WM tracts, and 

˜ W e and 

˜ b e are the values of 

 e and b e learned for segmenting existing WM tracts, respectively. 

hen, we have 

 

v 
e → n = σ

(
W 

(˜ W e ̃
 F v + ̃

 b e 

)
+ b 

)
= σ

(
W ̃

 W e ̃
 F v + W ̃

 b e + b 

)
. (7) 

Comparing P 

v 
n in Eq. (3) and P 

v 
e → n in Eq. (7) , we notice that

nstead of being randomly initialized, θn = { W n , b n } may be better

nitialized using the information in θe = { W e , b e } . Here, W and b

till need to be computed for initializing θn , and they can be com- 

uted by minimizing the difference between P 

v 
e → n and the anno- 

ation of novel WM tracts. Note that although there are only a few 

nnotations of novel WM tracts, they are sufficient for the compu- 

ation of W and b because the number of unknown parameters is 

rastically reduced. Then, suppose the estimates of W and b are ˜ W 

nd 

˜ b , respectively; W n and b n are initialized as 

 n ← 

˜ W ̃

 W e and b n ← 

˜ W ̃

 b e + ̃

 b . (8) 

inally, with θ initialized by ˜ θ like in classic fine-tuning, all net- 

ork weights in M n are learned jointly using the small number of 

nnotations of novel WM tracts. 

.3. A better implementation with warmup 

The derivation above suggests a possible way of using all infor- 

ation learned in M e for segmenting existing WM tracts to im- 

rove the segmentation of novel WM tracts. However, it is possi- 

le to have a more convenient implementation. To see that, we let 

 

′ = W ̃

 W e and b ′ = W ̃

 b e + b. Then, Eq. (7) becomes 

 

v 
e → n = σ

(
W 

′ ˜ F v + b 

′ ). (9) 

his suggests that we can directly estimate W 

′ and b ′ and use the 

stimated values to initialize θn . This is equivalent to inserting a 

armup stage before the classic fine-tuning, and the information 

n θe becomes redundant with such a fine-tuning strategy (but not 

ith classic fine-tuning). Specifically, given the trained model M e , 

or M n we first initialize θ as ˜ θ. Then, we fix θ and learn θn (ran- 

omly initialized) from the annotations of novel WM tracts. Finally, 

ith the initial value of θn learned in the previous warmup stage, 

e jointly fine-tune the weights θ and θn using the annotations of 

ovel WM tracts. Note that since θ is already pretrained before θn 

s learned, in the complete training process (including pretraining), 

n does not necessarily go through more iterations than θ. The im- 

acts of θ and θn on the segmentation results are naturally bal- 

nced, because 1) during pretraining and the initialization of the 

ast layer, θ and θn are updated until training convergence, respec- 

ively, and 2) at the final step of fine-tuning, θ and θn are adjusted 

imultaneously. 

The implementation with warmup not only is more convenient 

han the derivation in Section 2.2 , but also is more adaptive and 
4 
ould achieve better performance for the following reasons. First, 

he warmup strategy is not restricted to the decomposition in 

q. (8) and allows a more adaptive use of the information in θe . 

t can find the initialization corresponding to the decomposition as 

ell as possibly better initialization that may not be decomposed 

s Eq. (8) . Second, even for the case where the decomposed form 

llows the best initialization, the separate computation of { ̃  W , ̃  b } 
nd { ̃  W e , ̃  b e } could accumulate the error of each computation and 

lightly degrade the initialization, whereas directly estimating W 

′ 
nd b ′ avoids the problem. 

.4. Data augmentation by tract-aware image mixing 

In addition to the improved strategy of knowledge transfer from 

he pretrained model to the model that segments novel WM tracts, 

e further seek to better exploit the scarce training data with an- 

otated novel WM tracts during the knowledge transfer. In par- 

icular, motivated by the success of mixing-based data augmenta- 

ion ( Yun et al., 2019; Zhang et al., 2018 ), we propose to gener-

te new training samples with image mixing when there are more 

han one annotated scans for the novel WM tracts. These synthetic 

amples can be used to further improve the initialization of the 

ast layer for segmenting novel WM tracts and hence improve the 

egmentation performance. 

Mathematically, suppose we are given a set of images X = 

 X k } K k =1 
for which the annotations Y = { Y k } K k =1 

of novel WM tracts

re available. Here, K is the total number of annotated images, X k 

s the k -th annotated image, and Y k is the corresponding annota- 

ion. Note that since there are N novel WM tracts of interest, each 

 k comprises N binary masks: Y k = { Y 

j 

k 
} N 

j=1 
, where Y 

j 

k 
represents 

he annotation mask of X k for the j-th novel WM tract. 

When more than one images are annotated for the novel WM 

racts (i.e., K > 1 ), we propose to mix a pair of annotated images

s well as the annotations to generate additional training data. The 

ixing is achieved by combining different regions of the two anno- 

ated images and the corresponding annotations. Specifically, given 

wo annotated images X k 1 
and X k 2 

randomly drawn from X and 

he corresponding annotations Y k 1 
and Y k 2 

from Y , a synthetic im- 

ge X s and its annotation Y 

j 
s ( j ∈ { 1 , . . . , N} ) for each novel WM

ract can be generated as 

 s = X k 1 � M + X k 2 � (1 − M ) , (10) 

 

j 
s = Y 

j 

k 1 
� M + Y 

j 

k 2 
� (1 − M ) . (11) 

ere, � represents voxelwise multiplication, and M is a binary 

ask that represents the region of X k 1 
used for data mixing. The 

esign of M is described below. 

Considering that for segmentation problems it is beneficial to 

erform object-aware data mixing ( Ghiasi et al., 2021 ), we design 

he mixing mask M such that it is aware of the novel WM tracts, 

.e., the mask is determined by these tracts. Also, since the num- 

er of annotated scans is small in the few-shot setting, to generate 

ore diverse data, we choose to vary the tract awareness with dif- 

erent combinations of novel WM tracts. Specifically, for each novel 

M tract, its probability of contributing to the computation of the 

ask M is set to 0.5. We randomly select the novel WM tracts with 

his probability, and the mask M is determined as the union of the 

egions of the selected tracts in the two annotated scans that are 

o be mixed. Mathematically, it is equivalent to calculate M as 

 = 

⌈ 

1 

2 N 

N ∑ 

j=1 

a j (Y 

j 

k 1 
+ Y 

j 

k 2 
) 

⌉ 

. (12) 

ere, a j is sampled from the Bernoulli distribution Bernoulli (0 . 5) 

nd determines whether the j-th novel WM tract contributes to 
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Fig. 1. The detailed network architecture of TractSeg, which is used as the backbone segmentation network in this work. The numbers of channels are indicated for the 

layers. Note that the number of channels of the last layer is M when the network segments existing WM tracts, and the number is N for segmenting novel WM tracts. 
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3 If there are fewer than three fiber orientations, the intensities are set to zero in 
he computation of M ; �·� represents the ceiling operation. Since 

he data mixing in Eqs. (10) and (11) with the mask defined in 

q. (12) mixes the WM tracts in two images, the proposed data 

ugmentation strategy is named TractMix. Note that in general the 

amples generated by image mixing may not always look realistic, 

et they can still benefit the network training ( Yun et al., 2019; 

hang et al., 2018 ). 

By repeating the random sampling of the annotated images 

sed for image mixing and WM tracts used for computing M , a 

umber of synthetic annotated images can be generated. With K

eal images annotated for N novel WM tracts, TractMix can pro- 

uce K × (K − 1) × (2 N − 1) different synthetic annotated images 

t most, and duplicate synthetic samples are not allowed. Suppose 

he desired number of synthetic annotated images is K s ; in this 

ork, we set K s = min { 100 , K × (K − 1) × (2 N − 1) } , so that a large

umber of unique synthetic images can be produced. The synthetic 

mages and their annotations are used together with the real anno- 

ated images X and real annotations Y for initializing the last layer 

f the network that segments novel WM tracts. Note that for the fi- 

al fine-tuning step where all network weights are jointly updated, 

nly the real images X and real annotations Y are used. This is be- 

ause after the initialization of the last layer, the network weights 

an be already close to the desired values, and the incorporation 

f the synthetic samples that may be unrealistic could negatively 

ffect the final fine-tuning. 

We choose to perform offline data augmentation with TractMix, 

here the synthetic samples are generated before network train- 

ng, so that TractMix can be conveniently integrated with an arbi- 

rary segmentation framework without the need of modifying its 

ode, for example, the code for batch generation. Also, even when 

nly the interface of the segmentation framework is available with- 

ut the access to its source code, the offline data augmentation can 

till be applied. 

Note that the data augmentation step can be optional. As shown 

ater in the experimental results in Section 3.3 and Appendix A , 

he proposed data augmentation approach allows substantially im- 

roved segmentation accuracy for the more challenging scenario 

here domain shift exists between the data used for segmenting 

xisting and novel WM tracts. For the less challenging scenario 

ithout the domain shift, the segmentation performance of the 
t

5 
roposed method without TractMix is already good, and the seg- 

entation accuracy is similar with or without TractMix. 

.5. Backbone network for WM tract segmentation 

Our method is generic and agnostic to the structure of the 

egmentation network. For demonstration, we choose the Tract- 

eg architecture ( Wasserthal et al., 2018 ) as the backbone network, 

hich has achieved state-of-the-art performance and been applied 

o brain studies ( Veraart et al., 2021; Bryant et al., 2021 ), but other

etworks can also be used if they are shown superior to the Tract- 

eg architecture. 

The detailed network architecture of TractSeg is shown in Fig. 1 . 

ractSeg uses an encoder-decoder CNN based on the 2D U-net ar- 

hitecture ( Ronneberger et al., 2015 ) to segment WM tracts. The 

nputs to the CNN are fiber orientation maps, so that the network 

an be applied to data acquired with various protocols. The fiber 

rientations are computed with multi-shell multi-tissue constrained 

pherical deconvolution (MSMT-CSD) ( Jeurissen et al., 2014; Tournier 

t al., 2019 ) for multi-shell dMRI data and constrained spherical de- 

onvolution (CSD) ( Tournier et al., 2007 ) for single-shell dMRI data. 

or each voxel, the maximum number of fiber orientations is set to 

hree, and thus there are nine input channels. 3 Given a 3D image 

f fiber orientations, the network performs 2D segmentation for 

ach image view—the coronal, axial, or sagittal view—separately, 

nd then these results are merged for the final segmentation. Note 

hat the same network structure is used to segment existing or 

ovel WM tracts, except that the number of channels of the output 

ayer is M for existing WM tracts and N for novel WM tracts. 

.6. Implementation details 

We have implemented the proposed method based on the 

pen-source code of TractSeg at https://github.com/MIC-DKFZ/ 

ractSeg/ using PyTorch ( Paszke et al., 2019 ). To pretrain 

he network for segmenting existing WM tracts, we follow 

asserthal et al. (2018) and minimize the cross-entropy loss, 
he corresponding channels. 

https://github.com/MIC-DKFZ/TractSeg/


Q. Lu, W. Liu, Z. Zhuo et al. Medical Image Analysis 79 (2022) 102454 

Table 1 

A list of the 12 novel WM tracts and their abbreviations. 

WM tract name abbreviation WM tract name abbreviation 

1 Corticospinal tract left CST_left 7 Optic radiation left OR_left 

2 Corticospinal tract right CST_right 8 Optic radiation right OR_right 

3 Fronto-pontine tract left FPT_left 9 Inferior longitudinal fascicle left ILF_left 

4 Fronto-pontine tract right FPT_right 10 Inferior longitudinal fascicle right ILF_right 

5 Parieto-occipital pontine left POPT_left 11 Uncinate fascicle left UF_left 

6 Parieto-occipital pontine right POPT_right 12 Uncinate fascicle right UF_right 
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here Adamax ( Kingma and Ba, 2015 ) is used as the op- 

imizer with a learning rate of 0.001 and a batch size of 

7 ( Wasserthal et al., 2019 ). In addition, dropout with a probabil- 

ty of 0.4 is used like in Wasserthal et al. (2018) . Network train-

ng is performed with 300 epochs to ensure convergence, and the 

odel corresponding to the epoch with the highest Dice score on 

 validation set is selected. Similarly for the novel WM tracts, the 

raining specification described above is also used at each step 

f parameter learning, including the initialization of the network 

eights of the last layer and the final fine-tuning. Since in TractSeg 

raditional data augmentation (elastic deformation, scaling, inten- 

ity perturbation, etc.) is applied to training images online by de- 

ault, these operations are also performed online during pretrain- 

ng and at each training step of the proposed transfer learning ap- 

roach (for the synthetic samples generated offline by TractMix as 

ell). 

. Results 

In this section, we present the validation of our method on the 

ublicly available HCP dataset ( Van Essen et al., 2013 ) and a private

ataset comprising both HC subjects and AD patients. In the exper- 

ments, the proposed method was evaluated under various exper- 

mental settings. We first introduce the datasets and experimental 

ettings, and then we describe the experimental results on the two 

atasets. 

.1. Data description and experimental settings 

.1.1. The HCP dataset 

We first selected the dMRI scans from the HCP dataset ( Van Es- 

en et al., 2013 ) for evaluation. The dMRI scans were acquired 

ith 270 diffusion gradients ( b = 10 0 0 , 20 0 0 , and 30 0 0 s / mm 

2 )

nd an isotropic spatial resolution of 1.25 mm ( Sotiropoulos et al., 

013 ), and they have been processed by the minimal preprocess- 

ng pipeline ( Glasser et al., 2013 ). For these dMRI scans, 72 ma-

or WM tracts were annotated, and the annotations are provided 

y Wasserthal et al. (2018) . For the complete list of the annotated 

M tracts, we refer the readers to Wasserthal et al. (2018) . 

We split the 72 WM tracts into a set of existing WM tracts and

 set of novel WM tracts, which comprised 60 and 12 tracts, re- 

pectively, i.e., M = 60 and N = 12 . The 12 novel WM tracts were

andomly selected from the bilateral WM tracts, and the names 

nd abbreviations of the novel WM tracts are listed in Table 1 . The

xisting WM tracts correspond to the remaining WM tracts. 

We considered the experimental setting where abundant anno- 

ations were available for existing WM tracts and only a few an- 

otated scans were available for novel WM tracts. Specifically, 65 

MRI scans were used to pretrain the network that segments exist- 

ng WM tracts, together with the corresponding annotations of the 

xisting tracts. During pretraining, these 65 dMRI scans were split 

nto a training set of 52 dMRI scans and a validation set of 13 dMRI

cans. Then, for segmenting the novel WM tracts, we selected four 

ther dMRI scans to fine-tune the network with their annotations 

f the novel tracts. Three of them were used as the training set, 
6 
nd the other one was used as the validation set. Another set of 

0 annotated dMRI scans that were different from all the training 

nd validation scans described above was selected as the test set 

o evaluate the segmentation performance of the proposed method 

or the novel WM tracts. The results under this experimental set- 

ing will be presented in Section 3.2.1 . 

To further investigate the impact of the number of annotated 

raining scans for the novel WM tracts on the segmentation per- 

ormance, we considered two additional experimental settings. In 

he first setting, only one annotated scan was kept in the training 

et for fine-tuning, and only itself was used as the validation scan. 

n the second setting, additional dMRI scans with annotations of 

ovel WM tracts were included in the training and validation sets, 

o that the total numbers of training and validation scans for fine- 

uning were five and two, respectively. In both settings, we did not 

lter the test set, and the same pretrained model for segmenting 

xisting WM tracts was used. The results under these experimen- 

al settings will be shown in Section 3.2.2 . 

To show that the proposed method is applicable to differ- 

nt numbers of novel WM tracts, we also varied the selection 

f the novel WM tracts, where only a subset of the 12 novel 

M tracts was included in fine-tuning and evaluation (still with 

hree annotated training scans and one annotated validation scan). 

pecifically, two selections were considered. In the first selec- 

ion (referred to as Selection One), CST_left, CST_right, POPT_left, 

OPT_right, OR_left, and OR_right were included as the novel WM 

racts, and in the second selection (referred to as Selection Two), 

ST_left, CST_right, OR_left, and OR_right were included as the 

ovel WM tracts. The other training and evaluation settings were 

ot changed. The results under these experimental settings will be 

resented in Section 3.2.3 . 

In addition, like Wasserthal et al. (2018) and Lu et al. (2021) we 

nvestigated the impact of data quality on the segmentation per- 

ormance. Specifically, we generated clinical quality dMRI scans by 

ownsampling the original HCP dMRI scans to the spatial resolu- 

ion of 2.5 mm isotropic and then selecting only 34 diffusion gradi- 

nts at b = 10 0 0 s / mm 

2 . The annotations were also downsampled

ccordingly. The sets of the training, validation, and test subjects 

ere the same as the sets specified for the experiments with the 

riginal HCP dMRI scans, but only the generated clinical quality 

ata was used at each step (including both pretraining and fine- 

uning). Note that the same three cases of the numbers of training 

nd validation scans for fine-tuning were considered here for the 

2 novel WM tracts, where the numbers were 1/0, 3/1, and 5/2 for 

he training/validation scans, respectively. The results under these 

xperimental settings will be shown in Section 3.2.4 . 

Note that for all experimental results presented in 

ection 3.2 on the HCP dataset, where the scans used for seg- 

enting existing and novel WM tracts are from the same dataset 

ith the same imaging settings, TractMix was not applied, as the 

roposed method already achieved good segmentation quality 

ithout TractMix and further incorporation of TractMix would 

ead to similar segmentation performance. A detailed description 

f the comparison between the results of the proposed method 

chieved with and without TractMix will be given in Appendix A . 
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4 The paired Student’s t-test was selected because the difference between the 

two methods being compared is independent across the scans belonging to differ- 

ent subjects and its distribution resembles the Gaussian distribution. 
5 Since each WM tract has a distinct definition, it is reasonable to assume that 

the difference between the two methods being compared is independent across the 

tracts. Also, since the distribution of the difference resembles the Gaussian distri- 

bution, the paired Student’s t-test was selected here again. 
.1.2. The private dataset 

To show that the proposed method is not just applicable to 

he HCP dataset, we also used a private dataset ( Qin et al., 2021 )

o evaluate the segmentation performance. This dataset contained 

oth HC subjects and AD patients. The dMRI scans in the pri- 

ate dataset were acquired on a GE Premier scanner with an 

sotropic spatial resolution of 1.7 mm and 270 diffusion gradi- 

nts ( b = 10 0 0 , 20 0 0 , and 30 0 0 s / mm 

2 ). These dMRI scans were

reprocessed with the FSL topup ( Andersson et al., 2003 ) and 

ddy ( Andersson and Sotiropoulos, 2016 ) tools for distortion and 

otion correction. 

For this dataset, 10 WM tracts were annotated according to the 

nnotation protocol described in Wasserthal et al. (2018) , and they 

ncluded the tracts listed in Table 1 except ILF_left and ILF_right. 

he ten annotated tracts were used as the set of novel WM tracts. 

ote that since other WM tracts were not annotated for this 

ataset, we selected the network pretrained with the original HCP 

MRI scans for segmenting existing WM tracts as the pretrained 

odel, and this pretrained model was then fine-tuned with the an- 

otated dMRI scans in the private dataset for segmenting the novel 

M tracts. Specifically, during fine-tuning, one annotated dMRI 

can of an HC subject and one annotated dMRI scan of an AD pa-

ient were used as the training scans, and they were also used for 

odel selection. The annotated dMRI scans of five other HC sub- 

ects and five other AD patients were used as the test set to evalu-

te the segmentation quality. In addition, like the experiments on 

he HCP dataset, we varied the selection of the novel WM tracts 

nd evaluated the segmentation performance. Here, the same two 

ubsets of novel WM tracts selected for the HCP dataset—i.e., Se- 

ection One and Selection Two—were used. The other training and 

valuation settings were kept unchanged. 

Note that the proposed method was applied both with and 

ithout TractMix for the private dataset, where the segmentation 

as more challenging due to the domain shift between the data 

sed for pretraining and fine-tuning. The results for the private 

ataset will be reported in Section 3.3 . 

.2. Results on the HCP dataset 

.2.1. Evaluation of segmentation quality 

We first evaluated the performance of the proposed method 

ith 12 novel WM tracts using the original HCP dataset, where 

our annotated scans (three for training and one for validation) 

ere used for fine-tuning as described in Section 3.1.1 . The fine- 

uning of the pretrained model was performed with either the 

nitialization strategy proposed in Section 2.2 or the more conve- 

ient implementation in Section 2.3 . For convenience, hereinafter 

e refer to the approaches proposed in Sections 2.2 and 2.3 as 

urs1 and Ours2, respectively. Ours1 and Ours2 were compared 

ith three competing methods. The first one is the baseline Tract- 

eg network that was trained from scratch with the annotations of 

ovel WM tracts, where the pretrained model was not used. The 

econd one is a representative conventional registration-based seg- 

entation method Atlas FSL developed in Wasserthal et al. (2019) , 

here a volumetric tract atlas was created with the few dMRI 

cans annotated for the novel WM tracts and then registered to 

he test scans. The third competing method is the classic fine- 

uning method based on the pretrained model for segmenting ex- 

sting WM tracts and the annotations of novel WM tracts, and this 

ethod is referred to as FT. 

The qualitative evaluation results are given in Fig. 2 for the pro- 

osed and competing methods, where the 3D renderings of the 

egmentation results and their cross-sectional views overlaid on 

he fractional anisotropy (FA) map are shown for representative 

est subjects and WM tracts. Here, the manual delineations—i.e., 

nnotations—of the tracts are also shown for reference. In addition, 
7 
oomed views of the highlighted regions in the cross-sectional 

iews are shown in Fig. 2 . Compared with the competing methods, 

he geometry and spatial coverage of the tracts given by Ours1 and 

urs2 are more similar to those of the manual delineations. 

The proposed method was also evaluated quantitatively, where 

he Dice coefficient was computed for each WM tract on each 

est scan. These Dice coefficients are displayed in the boxplots in 

ig. 3 for the proposed and competing methods. For reference, 

he upper bound (UB) Dice coefficient was also computed and is 

hown in Fig. 3 , which represents the segmentation performance 

chieved with abundant annotations of novel WM tracts. Specifi- 

ally, to compute the UB Dice coefficient, the 65 dMRI scans origi- 

ally used for pretraining the network that segments existing WM 

racts were directly used to train the network that segments novel 

M tracts (using their annotations of novel WM tracts), together 

ith the four dMRI scans originally used for network fine-tuning, 

nd the network was trained from scratch. Note that the valida- 

ion subjects originally used for pretraining and fine-tuning were 

ombined as the validation set for computing the UB performance. 

From Fig. 3 , we can see that our method (either Ours1 or 

urs2) achieved higher Dice coefficients than the baseline method, 

tlas FSL, and FT, and these Dice coefficients are much closer to the 

B performance. The results of Ours1 and Ours2 are similar. Note 

hat the variation of the Dice coefficient can be greater for some 

M tracts than the others. This may be caused by the different 

ariability of WM tracts. Some WM tracts may have greater shape 

ariability across different subjects than the other tracts, and thus 

he difficulty of segmenting them varies more across subjects. 

Besides, Ours1 or Ours2 was compared with the competing 

ethods for each novel WM tract using paired Student’s t-tests 4 , 

nd the effect sizes (Cohen’s d) were measured for the compari- 

on. These results are shown in Table 2 . It can be seen that for

ach tract both Ours1 and Ours2 highly significantly ( p < 0 . 001 af-

er Bonferroni correction for multiple comparisons) outperform the 

aseline method, Atlas FSL, and FT with large effect sizes ( d > 0 . 8 ).

We also computed the average Dice coefficient for each tract 

nd each method, and the results are summarized in the boxplots 

n Fig. 4 together with the UB performance. The mean value of 

hese average Dice coefficients is indicated for each method and 

B in Fig. 4 as well. Consistent with Fig. 3 , both Ours1 and Ours2

utperform the competing methods, and their results are close to 

he UB performance. In addition, Ours2 has a slightly higher mean 

ice coefficient than Ours1. Then, we compared the average Dice 

oefficients of the tracts between Ours2 and the other methods 

including Ours1) using paired Student’s t-tests 5 and measured the 

ffect sizes (Cohen’s d). These results are also shown in Fig. 4 . The

erformance of Ours2 is highly significantly ( p < 0 . 001 ) better than

hose of the competing methods (the baseline method, Atlas FSL, 

nd FT) with large effect sizes ( d > 0 . 8 ). Although the difference

etween Ours1 and Ours2 is significant ( p < 0 . 05 ), the effect size

s very small. This indicates that Ours2 is better than Ours1 for 

ost tracts, but the difference is very small. 

To confirm the benefit of each step in the proposed transfer 

earning approach (both Ours1 and Ours2), the mean Dice coeffi- 

ient achieved with only the initialization of the last layer without 

he final fine-tuning step is shown in Table 3 , and the final results

f Ours1 and Ours2 are listed again for reference. For both Ours1 

nd Ours2, after the initialization of the last layer only (Step One), 
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Fig. 2. 3D renderings and cross-sectional views of the segmentation results (red) for representative test subjects and WM tracts. The cross-sectional views are overlaid on 

the FA map. The zoomed views of the highlighted regions in the cross-sectional views are also shown. The results of the proposed and competing methods are shown 

together with the manual delineations. The image orientations are indicated in the rightmost column. Note the 3D renderings for comparing the tract geometry and the 

highlighted regions for comparing the spatial coverage of tracts. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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he segmentation network can provide a moderate mean Dice co- 

fficient, and after the final fine-tuning step (Step Two), the seg- 

entation accuracy is substantially improved. 

Like Lu et al. (2021) , we considered an additional met- 

ic for evaluation, which is the relative volume differ- 

nce (RVD) ( Yeghiazaryan and Voiculescu, 2018 ) between the 

egmented WM tract and the corresponding manual delineation. 

hen similar segmentation accuracy is achieved in terms of the 

ice coefficient, a smaller RVD value is desired to reduce the 

ias of the quantification of tract volumes. We computed the 

verage RVD for each tract, and the results of each method and UB 

re shown in Fig. 5 . The mean of the average RVD values is also

ndicated for each method and UB in Fig. 5 . Again, like in Fig. 4 the

verage RVD values of Ours2 were compared with those of the 

ther methods (including Ours1) using paired Student’s t-tests, 

nd the effect sizes were computed. We can see that both Ours1 
8 
nd Ours2 have better (smaller) RVD values than the competing 

ethods, and their results are close to the UB performance. Ours2 

s significantly ( p < 0 . 05 or p < 0 . 001 ) better than the competing

ethods with large ( d > 0 . 8 ) or medium ( d close to 0.5) effect

izes. Although the mean RVD of Ours2 is slightly smaller than 

hat of Ours1, the performance of Ours1 and Ours2 is comparable, 

s indicated by the very small effect size and non-significant 

ifference between them. 

.2.2. Impact of the number of training scans annotated for novel 

M tracts 

We further investigated the impact of the number of training 

cans that were annotated for novel WM tracts. As described in 

ection 3.1.1 , we considered two additional experimental settings, 

here the numbers of annotated scans in the training/validation 

et for network fine-tuning were 1/0 and 5/2, respectively. 
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Fig. 3. Boxplots of the Dice coefficients on the test scans for all 12 novel WM tracts. Our method (either Ours1 or Ours2) achieved higher Dice coefficients than the competing 

methods, and these Dice coefficients are also much closer to the UB performance. 

Table 2 

The effect sizes (Cohen’s d) for the comparison of Dice coefficients between the proposed method (Ours1 

or Ours2) and the competing methods for each novel WM tract. Asterisks ( ∗∗∗) indicate that the difference 

between the proposed and competing methods is highly significant ( p < . 001 ) using a paired Student’s t- 

test after Bonferroni correction for multiple comparisons. 

Ours1 v.s. Baseline Atlas FSL FT Ours2 v.s. Baseline Atlas FSL FT 

CST_left d 53.86 3.85 3.59 CST_left d 52.32 3.86 3.61 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

CST_right d 24.23 1.71 1.61 CST_right d 24.57 1.71 1.61 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

FPT_left d 35.60 5.88 3.08 FPT_left d 36.16 6.16 3.29 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

FPT_right d 25.45 2.59 1.26 FPT_right d 25.09 2.59 1.28 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

POPT_left d 70.62 7.34 3.81 POPT_left d 69.52 7.25 3.75 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

POPT_right d 50.88 5.42 2.88 POPT_right d 51.12 5.50 2.95 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

OR_left d 41.42 7.30 3.90 OR_left d 40.79 7.34 3.97 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

OR_right d 33.23 5.26 2.30 OR_right d 32.93 5.34 2.40 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

ILF_left d 35.44 7.24 2.96 ILF_left d 36.78 7.49 3.07 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

ILF_right d 34.06 6.55 3.32 ILF_right d 31.48 6.24 3.24 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

UF_left d 19.35 2.07 2.31 UF_left d 20.31 2.09 2.32 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

UF_right d 27.62 2.35 2.09 UF_right d 29.09 2.53 2.20 

p ∗∗∗ ∗∗∗ ∗∗∗ p ∗∗∗ ∗∗∗ ∗∗∗

Table 3 

The mean value of the average Dice coefficients of 

the novel WM tracts after each step of the proposed 

transfer learning approach (both Ours1 and Ours2). 

For convenience, we refer to the initialization of the 

last layer only without the final fine-tuning step as 

Step One, and the final fine-tuning step is referred 

to as Step Two. 

Ours1 Ours2 

Step One Step Two Step One Step Two 

0.361 0.807 0.413 0.808 
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For each additional experimental setting, we computed the av- 

rage Dice coefficient and the average RVD for each tract. The 

eans of the average Dice coefficients and the average RVD values 
9 
re reported for each method in Tables 4 and 5 , respectively. The 

B performance was also computed and listed for reference. We 

an see that under these two settings, either Ours1 or Ours2 is bet- 

er than the competing methods, as indicated by the higher Dice 

oefficients and lower RVD values, and their results are closer to 

he UB performance. In particular, the performance of either Ours1 

r Ours2 with only one annotated training scan for the novel WM 

racts is better than the performance of classic fine-tuning with 

ve annotated training scans. 

In addition, in Tables 4 and 5 , we compared the average Dice 

oefficients and average RVD values of Ours2 with those of the 

ther methods using paired Student’s t-tests and measured the ef- 

ect sizes. For both Dice coefficients and RVD values, Ours2 signif- 

cantly ( p < 0 . 05 or p < 0 . 001 ) outperforms the baseline method,

tlas FSL, and FT, mostly with large effect sizes ( d > 0 . 8 ). Although

he Dice coefficient of Ours2 is slightly higher than that of Ours1, 
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Table 4 

The means of the average Dice coefficients of the novel WM tracts achieved with different num- 

bers of annotated training scans. Our results are highlighted in bold. The effect sizes (Cohen’s d) for 

comparing the average Dice coefficients between Ours2 and the other methods are also listed. Aster- 

isks indicate that the difference between Ours2 and the other method is significant using a paired 

Student’s t-test. ( ∗∗ p < . 01 , ∗∗∗ p < . 001 , n.s. p ≥ 0 . 05 ). 

Annotated training scans Baseline Atlas FSL FT Ours1 Ours2 UB 

1 Dice 0.000 0.645 0.590 0.777 0.784 0.828 

d 20.444 1.919 1.944 0.131 - - 

p ∗∗∗ ∗∗∗ ∗∗∗ ∗∗ - - 

5 Dice 0.052 0.683 0.757 0.811 0.812 0.830 

d 10.362 2.004 1.000 0.021 - - 

p ∗∗∗ ∗∗∗ ∗∗∗ n.s. - - 

Table 5 

The means of the average RVD values of the novel WM tracts achieved with different numbers of 

annotated training scans. Our results are highlighted in bold. The effect sizes (Cohen’s d) for compar- 

ing the average RVD values between Ours2 and the other methods are also listed. Asterisks indicate 

that the difference between Ours2 and the other method is significant using a paired Student’s t-test. 

( ∗ p < . 05 , ∗∗∗ p < . 001 , n.s. p ≥ 0 . 05 ). 

Annotated training scans Baseline Atlas FSL FT Ours1 Ours2 UB 

1 RVD 1.000 0.182 0.392 0.156 0.151 0.105 

d 17.458 0.403 1.854 0.067 - - 

p ∗∗∗ ∗ ∗∗∗ n.s. - - 

5 RVD 0.955 0.199 0.158 0.129 0.131 0.105 

d 11.234 0.815 0.372 0.036 - - 

p ∗∗∗ ∗ ∗ n.s. - - 

Fig. 4. Boxplots of the average Dice coefficient for each tract. The means of the 

average Dice coefficients are indicated. The effect sizes (Cohen’s d) for comparing 

the average Dice coefficients between Ours2 and the other methods are also listed. 

Asterisks indicate that the difference between Ours2 and the other method is sig- 

nificant ( ∗ p < . 05 and ∗∗∗ p < . 001 ) using a paired Student’s t-test. 
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Fig. 5. Boxplots of the average RVD for each tract. The means of the average RVD 

values are indicated. The effect sizes (Cohen’s d) for comparing the average RVD 

values between Ours2 and the other methods are also listed. Asterisks indicate that 

the difference between Ours2 and the other method is significant ( ∗ p < . 05 and 
∗∗∗ p < . 001 ) using a paired Student’s t-test. Note that n.s. represents non-significant 

( p ≥ 0 . 05 ) difference. 
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heir performance is still comparable, as indicated by the small ef- 

ect sizes ( d < 0 . 2 ) of the Dice coefficient and RVD. 

.2.3. Segmentation performance with different selections of novel 

M tracts 

We then varied the selection of the novel WM tracts as de- 

cribed in Section 3.1.1 and evaluated the segmentation perfor- 

ance for the different selections (with three annotated training 

cans). For each selection, we computed the average Dice coeffi- 

ient for each novel WM tract, and the results are summarized 
10 
n Table 6 for each method and the UB. Like the results achieved 

ith 12 novel WM tracts in Section 3.2.1 , for these different selec- 

ions of novel WM tracts, the proposed method also outperforms 

he competing methods, and its performance is close to the UB. 

.2.4. Impact of data quality 

We also investigated the impact of data quality on the segmen- 

ation performance as described in Section 3.1.1 . In particular, we 

sed 52/13 clinical quality dMRI scans as the training/validation 
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Table 6 

The average Dice coefficient for each novel WM tract when the selection of the 

novel WM tracts varied (with three annotated training scans). Our results are high- 

lighted in bold. 

Selection One Baseline Atlas FSL FT Ours1 Ours2 UB 

CST_left 0.000 0.761 0.750 0.835 0.842 0.856 

CST_right 0.002 0.754 0.740 0.825 0.830 0.848 

POPT_left 0.000 0.723 0.760 0.841 0.846 0.859 

POPT_right 0.000 0.714 0.763 0.834 0.835 0.850 

OR_left 0.000 0.603 0.697 0.823 0.823 0.836 

OR_right 0.000 0.623 0.707 0.783 0.780 0.801 

Selection Two Baseline Atlas FSL FT Ours1 Ours2 UB 

CST_left 0.000 0.761 0.802 0.841 0.841 0.855 

CST_right 0.000 0.754 0.802 0.831 0.829 0.849 

OR_left 0.000 0.603 0.775 0.828 0.827 0.836 

OR_right 0.000 0.623 0.754 0.786 0.788 0.803 
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et to pretrain the model for segmenting existing WM tracts, re- 

pectively. Then, 1/0, 3/1, and 5/2 clinical quality dMRI scans were 

sed as the training/validation set to fine-tune the segmentation 

etwork for the 12 novel WM tracts, respectively. 

The average Dice coefficient and average RVD were computed 

or each tract. Their mean values are summarized for each method 

n Tables 7 and 8 , together with the UB performance achieved with 

he clinical quality data. Also, the average Dice coefficients and av- 

rage RVD values of Ours2 were compared with those of the other 

ethods using paired Student’s t-tests, and the effect sizes were 

omputed. These results are given in Tables 7 and 8 too. 

Both Ours1 and Ours2 outperform the competing methods with 

igher Dice coefficients, and the improvement of Ours2 is highly 

ignificant ( p < 0 . 001 ) with large effect sizes ( d > 0 . 8 ) compared

ith the competing methods. For the RVD value, Ours1 is better 

han the competing methods in most cases; in all cases, Ours2 

s better than the competing methods, and the difference is sig- 

ificant with large effect sizes in most cases. The performance of 

urs2 is either comparable to that of Ours1 with small effect sizes 

 d < 0 . 2 ) or better than that of Ours1 with medium effect sizes ( d

lose to 0.5). 

.3. Results on the private dataset 

In addition to the results on the HCP dataset, we evaluated our 

pproach on a private dataset comprising both HC subjects and AD 

atients as described in Section 3.1.2 . Specifically, the segmentation 

etwork that was pretrained on the original HCP dataset for exist- 

ng WM tracts was fine-tuned with one HC dMRI scan and one 

D dMRI scan from the private dataset for segmenting novel WM 

racts. 

We first evaluated the segmentation performance with all ten 

ovel WM tracts. The average Dice coefficient and average RVD 

alue were computed for each tract using all the test scans, and 

heir means are summarized in Table 9 for each method. Both 

urs1 and Ours2 have better Dice coefficients than the compet- 

ng methods. When Ours1 and Ours2 are combined with TractMix 

referred to as Ours1 + TractMix and Ours2 + TractMix, respec- 

ively), the Dice coefficients are further improved. For the addi- 

ional RVD metric, Ours1 and Ours2 have better results than the 

aseline method and FT, which are CNN-based competing meth- 

ds, and Ours1 + TractMix and Ours2 + TractMix further reduce the 

VD; however, Atlas FSL has a lower RVD value than the proposed 

trategies. For the comparison among the results of the proposed 

ethod, the performance of Ours2 or Ours2 + TractMix is better 

han that of Ours1 or Ours1 + TractMix, respectively, and Ours2 + 

ractMix has the best performance. 

In addition, we compared the average Dice coefficients and av- 

rage RVD values of Ours2 + TractMix with the results of the other 
11 
ethods using paired Student’s t-tests and measured the effect 

izes. Regarding the Dice coefficients, Ours2 + TractMix outper- 

orms the competing methods highly significantly ( p < . 001 ) with 

arge effect sizes ( d > 0 . 8 ), and it also outperforms Ours1, Ours2,

nd Ours1 + TractMix with statistical significance ( p < 0 . 001 or

p < 0 . 01 ). Except for Atlas FSL, the RVD result of Ours2 + TractMix

s highly significantly better than those of the competing methods 

ith large effect sizes, and it is also better than the RVD results 

f Ours1, Ours2, and Ours1 + TractMix with statistical significance 

 p < 0 . 001 or p < 0 . 01 ). 

We also investigated the segmentation performance for the HC 

ubjects and the AD patients separately, where the means of the 

verage Dice coefficients and average RVD values were computed 

or these two individual groups. The results are listed in Table 9 as 

ell, and they are consistent with the results computed with all 

est subjects. For both of the HC and AD groups, our method 

Ours1, Ours2, Ours1 + TractMix, or Ours2 + TractMix) has better 

erformance than the competing methods, except for the RVD re- 

ults of Atlas FSL, and the incorporation of TractMix improves the 

egmentation quality for both Ours1 and Ours2. 

Next, we varied the selection of the novel WM tracts as de- 

cribed in Section 3.1.2 and evaluated the segmentation perfor- 

ance for these cases. For each selection, the means of the av- 

rage Dice coefficients and average RVD values of the novel WM 

racts are summarized in Table 10 for each method. Like the re- 

ults achieved with ten novel WM tracts, our method achieves bet- 

er performance than the competing methods, except for the RVD 

alues of Atlas FSL, and the incorporation of TractMix benefits both 

urs1 and Ours2. 

. Discussion 

Although a large number of annotated scans can be carefully 

urated for training networks that segment WM tracts, it is possi- 

le that certain brain studies focus on novel WM tracts that are not 

ncluded in the existing annotated WM tracts. Because annotating 

M tracts is laborious, it is desired that the knowledge learned for 

egmenting existing WM tracts can be transferred to the segmen- 

ation of novel WM tracts, so that with only a few scans that are 

nnotated for the novel WM tracts, the segmentation can be per- 

ormed accurately. To this end, we propose a fine-tuning strategy 

hat allows all the knowledge learned for segmenting existing WM 

racts to be exploited for segmenting the novel WM tracts, and this 

trategy is further improved with a more convenient and adaptive 

mplementation with warmup. Our method was evaluated on dif- 

erent datasets under various settings, as well as on both healthy 

ubjects and patients. The results show the benefit of the pro- 

osed fine-tuning method compared with other segmentation ap- 

roaches, including classic fine-tuning. In addition, the results in- 

icate that the more convenient and adaptive implementation with 

armup has better or comparable performance compared with the 

riginal implementation. This is consistent with the argument in 

ection 2.3 . 

In addition to the improved fine-tuning strategy, we have pro- 

osed a simple yet effective data augmentation approach Tract- 

ix, which can further benefit the segmentation of novel WM 

racts given a small number of training scans annotated for these 

racts. In TractMix, tract-aware mixing of pairs of annotated im- 

ges is performed, and to generate diverse synthetic training data, 

he annotated images are mixed with different combinations of 

M tracts. The experimental results demonstrate that TractMix is 

eneficial for the few-shot segmentation of novel WM tracts in 

he more challenging scenario where domain shift exists between 

he data used for segmenting existing and novel WM tracts. For 

he less challenging scenario without the domain shift, the seg- 

entation accuracy achieved with or without TractMix is similar 
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Table 7 

The means of the average Dice coefficients of the novel WM tracts for the clinical quality data. Our 

results are highlighted in bold. The effect sizes (Cohen’s d) for comparing the average Dice coef- 

ficients between Ours2 and the other methods are also listed. Asterisks indicate that the differ- 

ence between Ours2 and the other method is significant using a paired Student’s t-test. ( ∗ p < . 05 , 
∗∗∗ p < . 001 ). 

Annotated training scans Baseline Atlas FSL FT Ours1 Ours2 UB 

1 Dice 0.000 0.634 0.043 0.694 0.724 0.788 

d 15.097 1.196 9.934 0.445 - - 

p ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ - - 

3 Dice 0.000 0.659 0.473 0.758 0.764 0.790 

d 18.147 1.476 2.075 0.102 - - 

p ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ - - 

5 Dice 0.000 0.662 0.635 0.757 0.761 0.784 

d 15.879 1.334 1.352 0.057 - - 

p ∗∗∗ ∗∗∗ ∗∗∗ ∗ - - 

Table 8 

The means of the average RVD values of the novel WM tracts for the clinical quality data. Our results 

are highlighted in bold. The effect sizes (Cohen’s d) for comparing the average RVD values between 

Ours2 and the other methods are also listed. Asterisks indicate that the difference between Ours2 and 

the other method is significant using a paired Student’s t-test. ( ∗ p < . 05 , ∗∗∗ p < . 001 , n.s. p ≥ 0 . 05 ). 

Annotated training scans Baseline Atlas FSL FT Ours1 Ours2 UB 

1 RVD 1.000 0.224 41.447 0.258 0.213 0.171 

d 14.318 0.131 1.314 0.583 - - 

p ∗∗∗ n.s. ∗ ∗∗∗ - - 

3 RVD 1.000 0.238 0.562 0.159 0.157 0.160 

d 16.683 0.975 2.841 0.032 - - 

p ∗∗∗ ∗∗∗ ∗∗∗ n.s. - - 

5 RVD 1.000 0.271 0.362 0.183 0.176 0.178 

d 12.906 0.995 1.594 0.075 - - 

p ∗∗∗ ∗∗∗ ∗∗∗ ∗ - - 

Table 9 

The means of the average Dice coefficients and average RVD values of the novel WM tracts for the private dataset. 

Our results are highlighted in bold. The effect sizes (Cohen’s d) for comparing the average Dice coefficients or 

average RVD values between Ours2 + TractMix and the other methods are also listed. Asterisks indicate that the 

difference between Ours2 + TractMix and the other method is significant ( ∗ p < . 05 , ∗∗ p < . 01 , and ∗∗∗ p < . 001 ) 

using a paired Student’s t-test. The means computed with the HC subjects and the AD patients separately are 

shown as well. 

Baseline Atlas FSL FT Ours1 Ours2 Ours1 + TractMix Ours2 + TractMix 

All Dice 0.008 0.587 0.452 0.645 0.694 0.715 0.728 

d 19.116 2.881 2.121 1.529 0.676 0.241 - 

p ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗ - 

RVD 0.991 0.242 0.603 0.398 0.326 0.305 0.277 

d 10.168 0.333 2.118 1.285 0.504 0.287 - 

p ∗∗∗ ∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗ - 

HC Dice 0.009 0.610 0.463 0.667 0.712 0.732 0.743 

RVD 0.990 0.241 0.583 0.358 0.294 0.275 0.252 

AD Dice 0.008 0.565 0.441 0.622 0.675 0.698 0.712 

RVD 0.992 0.243 0.623 0.439 0.358 0.335 0.301 

Table 10 

The means of the average Dice coefficients and average RVD values of the novel WM tracts for the private dataset 

when the selection of the novel WM tracts varied. Our results are highlighted in bold. 

Selection Baseline Atlas FSL FT Ours1 Ours2 Ours1 + TractMix Ours2 + TractMix 

One Dice 0.008 0.602 0.520 0.687 0.713 0.720 0.717 

RVD 0.989 0.267 0.545 0.344 0.286 0.284 0.280 

Two Dice 0.000 0.589 0.372 0.540 0.662 0.670 0.682 

RVD 0.985 0.303 0.729 0.538 0.366 0.359 0.346 

12 
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see Appendix A ), possibly because the segmentation accuracy is 

lready good and close to the upper bound even without Tract- 

ix. Note that as brains are generally located at the center of dMRI 

cans, we do not perform image registration before image mixing, 

hich would require nontrivial interpolation of multiple fiber ori- 

ntations. Although there can be misalignment between the anno- 

ated images that leads to less realistic synthetic data, the gener- 

ted training samples can still be beneficial to network training. 

his is in agreement with previous observations that there is a 

radeoff between the authenticity and diversity of the samples pro- 

uced by data augmentation ( Gontijo-Lopes et al., 2021 ). 

Our method was evaluated using the original HCP dataset, the 

linical quality data generated from the HCP dataset, and the 

rivate dataset. Compared with the results on the original HCP 

ataset, the segmentation quality is decreased for the clinical qual- 

ty data, as indicated by the lower Dice coefficients and higher RVD 

alues (e.g., compare Tables 7 and 8 with Figs. 4 and 5 ). This is

ossibly due to the reduced image quality, which increases the 

egmentation difficulty. This observation is also consistent with 

revious works ( Lu et al., 2021; Wasserthal et al., 2018 ), and 

ore training data is desired for datasets with lower image qual- 

ty ( Lu et al., 2021 ). In addition, although the image quality of the

rivate dataset is better than the generated clinical quality data 

n terms of spatial resolution and the number of diffusion gradi- 

nts, the segmentation performance (the Dice coefficient and RVD) 

n the private dataset is not better than the performance on the 

linical quality data. This is likely due to the domain shift caused 

y the difference between the HCP dataset that was used for pre- 

raining and the target private dataset, where the feature extrac- 

ion for the HCP dataset may not be fully suitable for the private 

ataset. This domain shift may also explain the observation that 

or the private dataset CNN-based approaches did not preserve the 

olume of the tracts as well as the registration-based method At- 

as FSL, where the smoothness constraint during registration could 

egularize the variations of tract volumes. However, this regular- 

zation does not guarantee the correctness of the spatial coverage 

f the tracts, and the Dice coefficient of the proposed method ex- 

eeds that of Atlas FSL by a large margin for the private dataset, 

ndicating that the proposed method is still much more accurate 

han Atlas FSL. Note that the data quality of the private dataset is 

lose to that of the original high-quality HCP dataset. If both do- 

ain shift exists and data quality is reduced, we expect that the 

egmentation problem becomes even more challenging. The do- 

ain shift problem can be further explored in future work to im- 

rove the segmentation performance. For example, dMRI harmo- 

ization ( Mirzaalian et al., 2016 ) can be taken into consideration. 

In this work, we use the TractSeg architecture as the back- 

one network, which performs volumetric WM tract segmentation 

nd has achieved state-of-the-art segmentation performance. Our 

ethod may also be integrated with more advanced segmentation 

etworks. For example, the integration of transformer with U-net 

as been shown to improve the performance for several medical 

mage segmentation tasks ( Chen et al., 2021 ). Similar improvement 

an be made to the TractSeg structure, and our method can be in- 

egrated with the improved network. The proposed method may 

lso be applicable to CNN-based WM tract segmentation methods 

hat classify fiber streamlines, such as Zhang et al. (2020) , where 

he last layer can be better initialized with the knowledge learned 

or existing WM tracts. 

In a related work ( Lu et al., 2021 ), a self-supervised learning 

pproach is developed to segment WM tracts with limited annota- 

ions by exploiting a large amount of unlabeled data. This method 

nd the proposed approach address the problem of scarce anno- 

ations under different settings. The proposed approach performs 

he segmentation of novel WM tracts given a model that segments 

xisting WM tracts, whereas the method in Lu et al. (2021) seg- 
13 
ents WM tracts without needing the information about seg- 

enting existing WM tracts but with a sufficient number of 

nannotated scans. Depending on the resources that are acces- 

ible, one of these two approaches can be selected to segment 

M tracts. In addition, it is possible to integrate the proposed 

ethod with Lu et al. (2021) when both a model for segment- 

ng existing WM tracts and a large amount of unannotated data 

re available, and this integration can be investigated in future 

ork. 

In transfer learning, the pretrained model can have knowledge 

hat is irrelevant to or even misleads the target task. During trans- 

er learning, such knowledge may also be transferred to the tar- 

et task, which is referred to as negative transfer and degrades 

he performance of the target task ( Wang et al., 2019 ). Thus, it is

esirable to regularize the transfer learning process to reduce the 

ffect of negative transfer. However, in the proposed approach no 

xplicit suppression of negative transfer is incorporated yet. Future 

ork could explore the integration of negative transfer suppres- 

ion ( Chen et al., 2019 ) into the few-shot segmentation of novel 

M tracts. 

Because TractMix combines two annotated images for generat- 

ng new training samples, one limitation of TractMix is that it re- 

uires at least two annotated scans and cannot be applied to the 

ne-shot setting. Also, the number of possible synthetic samples 

ecreases when fewer novel WM tracts are of interest. However, 

e have shown in the experiments that even without TractMix, the 

roposed transfer learning strategy already leads to improved seg- 

entation accuracy, and when more than one annotated scans are 

vailable with multiple tracts of interest, the proposed data aug- 

entation approach can introduce additional benefits. Future work 

ould further explore data augmentation strategies that can be 

erformed even for one-shot segmentation of a single novel WM 

ract. 

In the proposed method, we assume that the logits of exist- 

ng WM tracts can inform the prediction of novel WM tracts based 

n the observation that WM tracts can co-occur as crossing or 

verlapping tracts in a large number of voxels, and this assump- 

ion leads to the proposed improved fine-tuning strategy. Our fine- 

uning strategy may be applied to other segmentation tasks with 

imilar characteristics, where existing classes of anatomical struc- 

ures correlate with the novel classes. Hierarchical brain parcella- 

ion can be an example, where a pretrained model performs coarse 

arcellation of the brain into the cortical gray matter, white mat- 

er, subcortical structures, and cerebrospinal fluid, and the target 

ask is to parcellate the brain into fine-grained regions (such as 

ifferent gyri and sulci) with only a few annotations based on the 

retrained model. 

. Conclusion 

We have proposed a transfer learning approach to few-shot seg- 

entation of novel WM tracts with the knowledge learned from 

he segmentation of existing WM tracts. Unlike classic fine-tuning, 

e not only exploit the information in the pretrained feature ex- 

raction layers, but also take advantage of the learned knowledge 

n the task-specific layer for segmenting existing WM tracts. The 

ncorporation of this knowledge allows better initialization for the 

etwork that segments novel WM tracts. In addition, a simple yet 

ffective data augmentation strategy TractMix is developed to bet- 

er exploit the information in the few annotated scans during the 

nowledge transfer, where synthetic training images are generated 

ith tract-aware image mixing. The proposed method was eval- 

ated on brain dMRI scans from public and private datasets un- 

er various experimental settings, and the results indicate that our 

ethod improves the performance of segmenting novel WM tracts 

n the few-shot setting. 
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ppendix A. Segmentation accuracy of the proposed method 

chieved with and without TractMix for the HCP dataset 

In this appendix, we present and compare the results of the 

roposed method on the HCP dataset achieved with and without 

ractMix. In particular, the mean value of the average Dice coeffi- 

ients of the novel WM tracts is summarized in Table A:1 for each 

xperimental setting in Section 3.2 . Here, HQ and CQ represent the 

xperiments on the original high-quality and the generated clinical 

uality scans, respectively. Note that TractMix was only applicable 

ith more than one annotated scans. The results show that for the 

xperiments on the HCP dataset, where there was no domain shift 

etween the scans used for segmenting existing and novel WM 

racts, the performance of the proposed method achieved with or 

ithout TractMix is similar. 
able A:1 

he means of the average Dice coefficients of the novel WM tracts of the proposed 

ethod achieved with and without TractMix for the HCP dataset. For convenience, 

e refer to the experiments on the original high-quality and the generated clinical 

uality data as HQ and CQ, respectively. Selection All refers to the use of all 12 

ovel WM tracts. 

Data 

Annotated 

training 

scans Selection Ours1 Ours2 

Ours1 + 

TractMix 

Ours2 + 

TractMix 

HQ 5 All 0.811 0.812 0.812 0.812 

HQ 3 All 0.807 0.808 0.809 0.809 

HQ 3 One 0.824 0.826 0.828 0.827 

HQ 3 Two 0.821 0.821 0.821 0.821 

CQ 5 All 0.757 0.761 0.761 0.763 

CQ 3 All 0.758 0.764 0.766 0.769 
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