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Previous genome-wide association studies have identified dozens of susceptibility loci for sporadic Alzheimer’s disease, but few of

these loci have been validated in longitudinal cohorts. Establishing predictive models of Alzheimer’s disease based on these novel

variants is clinically important for verifying whether they have pathological functions and provide a useful tool for screening of dis-

ease risk. In the current study, we performed a two-stage genome-wide association study of 3913 patients with Alzheimer’s disease

and 7593 controls and identified four novel variants (rs3777215, rs6859823, rs234434, and rs2255835; Pcombined = 3.07 � 10–19,

2.49 � 10–23, 1.35 � 10–67, and 4.81 � 10–9, respectively) as well as nine variants in the apolipoprotein E region with genome-

wide significance (P55.0 � 10–8). Literature mining suggested that these novel single nucleotide polymorphisms are related to

amyloid precursor protein transport and metabolism, antioxidation, and neurogenesis. Based on their possible roles in the develop-

ment of Alzheimer’s disease, we used different combinations of these variants and the apolipoprotein E status and successively built

11 predictive models. The predictive models include relatively few single nucleotide polymorphisms useful for clinical practice, in

which the maximum number was 13 and the minimum was only four. These predictive models were all significant and their peak

of area under the curve reached 0.73 both in the first and second stages. Finally, these models were validated using a separate lon-

gitudinal cohort of 5474 individuals. The results showed that individuals carrying risk variants included in the models had a

shorter latency and higher incidence of Alzheimer’s disease, suggesting that our models can predict Alzheimer’s disease onset in a

population with genetic susceptibility. The effectiveness of the models for predicting Alzheimer’s disease onset confirmed the contri-

butions of these identified variants to disease pathogenesis. In conclusion, this is the first study to validate genome-wide association

study-based predictive models for evaluating the risk of Alzheimer’s disease onset in a large Chinese population. The clinical appli-

cation of these models will be beneficial for individuals harbouring these risk variants, and particularly for young individuals seek-

ing genetic consultation.

1 Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University,
National Clinical Research Center for Geriatric Diseases, Beijing, China

2 Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi, China
3 Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing,

China
4 Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
5 Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, China
6 Department of Neurology, China-Japan Friendship Hospital, Beijing, China

Received February 14, 2020. Revised July 30, 2020. Accepted August 14, 2020.
VC The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which

permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

doi:10.1093/brain/awaa364 BRAIN 2020: Page 1 of 14 | 1

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

aa364/5981992 by guest on 15 N
ovem

ber 2020

http://orcid.org/0000-0003-4624-0336


7 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Shandong, China
8 Department of Neurology, The First Affiliated Hospital, Zhejiang University, Zhejiang, China
9 Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China

10 Department of Geriatrics, Guangzhou Huiai Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
11 Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China
12 Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan, China
13 Department of Neurology, Zhongnan Hospital, Wuhan University, Hubei, China
14 Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
15 Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
16 Department of Geriatric, Fuxing Hospital, Capital Medical University, Beijing, China
17 Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
18 Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
19 Center for Cognitive Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
20 Department of Psychiatry, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou,

Zhejiang, China
21 Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
22 Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
23 Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China
24 Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China
25 Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China

Correspondence to: Jianping Jia, MD, PhD Innovation Center for Neurological Disorders and Department of

Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric

Diseases, Changchun Street 45, Xicheng District, Beijing, China, 100053

E-mail: jjp@ccmu.edu.cn

Correspondence may also be addressed to: Jie Lu, MD, PhD

Department of Radiology, Department of Nuclear Medicine, Xuanwu Hospital, Capital

Medical University, Changchun Street 45, Xicheng District, Beijing, China, 100053

E-mail: imaginglu@hotmail.com

Keywords: Alzheimer’s disease; genome-wide association study; Chinese; predictive model; longitudinal cohort

Abbreviations: AUC = area under the curve; eQTL = expression quantitative trait loci; GWAS = genome-wide association study;
SNP = single nucleotide polymorphism

Introduction
Alzheimer’s disease is the most common type of dementia

and is genetically complex with an estimated heritability of

60–80% (Gatz et al., 1997). Previous genome-wide associ-

ation studies (GWASs) of Alzheimer’s disease in Caucasian,

African-American, and Asian populations have identified

genetic risk variants in ABCA7, BIN1, CASS4, CD2AP,

CD33, CDK5RAP2, CELF1, CLU, COBL, CR1,

ECHDC3, EPHA1, EXOC3L2, FERMT2, HLA-DRB5,

HLA-DRB1, HS3ST1, INPP5D, KANSL1, MEF2C, MS4A,

NME8, PICALM, PM20D1, PTK2B, SLC10A2, SLC24A4,

SORL1, TREM2, and ZCWPW1 (Harold et al., 2009;

Lambert et al., 2009, 2013a; Seshadri et al., 2010;

Hollingworth et al., 2011; Naj et al., 2011; Guerreiro et al.,

2013; Miyashita et al., 2013; Reitz et al., 2013; Desikan

et al., 2015; Jun et al., 2016; Lacour et al., 2017; Miron

et al., 2018; Sanchez-Mut et al., 2018; Kunkle et al., 2019).

These variants affect several Alzheimer’s disease-related

processes, such as lipid metabolism, inflammation, innate

immunity, production and clearance of amyloid-b, and

endosomal vesicle recycling (Selkoe and Hardy, 2016).

However, few of the variants reported in Caucasians have

been identified in the Chinese population (Wang et al.,

2016). A recent whole genome sequencing study in a

Chinese population identified variants in GCH1 and

KCNJ15, in addition to the well-known apolipoprotein E

(APOE) locus; however, the sample size of this study was

relatively small (Zhou et al., 2018).

Recently, genetic predictive models have been established

for predicting the onset of Alzheimer’s disease using a poly-

genic risk score approach, which was used to reveal polygen-

etic contributions to Alzheimer’s disease risk of common

single nucleotide polymorphisms (SNPs) that show a disease

association but fail to meet the accepted P-value threshold

for genome-wide significance (Escott-Price et al., 2015,

2017a, b, 2019; Chouraki et al., 2016; Stocker et al., 2018;

Leonenko et al., 2019). These studies showed variable

results. Specifically, Escott-Price et al. reported that the area

under the curve (AUC) of their predictive models, which

included APOE, 480 000 SNPs, age, and sex as predictors,

was 0.78, whereas in their other study, the AUC of their

models including 420 000 SNPs and APOE as predictors

increased to 0.84 as the included individuals were patho-

logically but not clinically confirmed (Escott-Price et al.,

2015, 2017a). However, despite the high predictive accuracy
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of these polygenic risk score-based models, it may not be

easy to use these models in a clinical setting because an indi-

vidual may not carry so many risk variants. Thus, simple

and effective Alzheimer’s disease predictive models are

needed for use as tools to screen for the genetic risk of

Alzheimer’s disease, particularly in young individuals who

carry the risk variants.

The current study aimed to investigate novel Alzheimer’s

disease-related genetic variants in a GWAS, to establish pre-

dictive models based on these variants, and to validate the

models in a longitudinal cohort. This approach can be

applied for early intervention in individuals who are at a

risk of developing Alzheimer’s disease.

Materials and methods

Subjects

The two-stage GWAS study involved 3913 patients with
Alzheimer’s disease and 7593 controls from a Chinese popula-
tion. The cohorts used in the two stages were independent of
each other. Patients with Alzheimer’s disease were recruited
from the outpatient memory clinics at the Department of
Neurology, Xuanwu Hospital, Capital Medical University,
Beijing, China and 46 other participating hospitals across China
from 2013 to 2018. All diagnoses of Alzheimer’s disease in this
study were based on the recommendations of the National
Institute on Aging and the Alzheimer’s Association workgroup
(McKhann et al., 2011) or National Institute of Neurological
and Communicative Disorders and Stroke and the Alzheimer’s
Disease and Related Disorders Association criteria (McKhann
et al., 1984), with an age-at-onset 560 years and no family his-
tory of dementia. Controls were recruited from the aforemen-
tioned medical centre hospitals. All controls were 560 years of
age, cognitively normal (without subjective memory complaints,
a Mini-Mental State Examination score of 26–30, and Clinical
Dementia Rating Scale score of 0), and free of any general or la-
boratory evidence of diseases that could impact cognition.
Demographic information was collected from each subject using
a structured questionnaire.

Furthermore, using associated SNPs from the GWAS data,
predictive models of Alzheimer’s disease were generated by com-
bining risk variants. To estimate the effectiveness of the predict-
ive models, participants from a longitudinal cohort of the China
Cognition and Aging Study (China COAST) (Jia et al., 2014)
were selected. China COAST was a longitudinal study estab-
lished in 2008 as a multicentre cohort study comprising normal,
mild cognitive impairment-, and Alzheimer’s disease-affected
individuals across 30 of 34 provinces in China with yearly fol-
low-up. The inclusion criteria were as follows: (i) the individual
was cognitively normal 10 years ago at baseline with indicative
blood samples; (ii) the individual developed Alzheimer’s disease
at the time of sample collection for the present study 10 years
later; and (iii) the individual had a detailed clinical data profile
including psychometric evaluation every year during follow-up.
Finally, 5474 participants were recruited, from among which
2358 developed Alzheimer’s disease and 3116 were cognitively
normal in 2019 (Supplementary Table 1). The study was
approved by the Ethical Committees of Xuanwu Hospital,

Capital Medical University. Written informed consent was
obtained from either the subjects or their legal guardians
according to the Declaration of Helsinki.

GWAS study

First stage

Genomic DNA was extracted from peripheral blood samples
using a modified salting-out procedure (Nasiri et al., 2005). In
the first stage, we performed genome-wide genotyping of 1679
patients with Alzheimer’s disease and 2508 controls using
Illumina HumanOmniZhongHua-8 Bead Chips (Illumina). After
genotyping, systematic quality control analyses were conducted
using PLINK 1.90 software (http://www.cog-genomics.org/
plink2) (Purcell et al., 2007; Chang et al., 2015). First, 118 sam-
ples (84 patients with Alzheimer’s disease and 34 controls) were
omitted because of sample duplicates or cryptic relatedness
(PI_HAT 4 0.1875, which is the identity-by-descent expected
between third- and second-degree relatives) (Ellingson and
Fardo, 2016), or low individual call rate (50.95). The remain-
ing samples were assessed for population outliers and stratifica-
tion in principal component analysis using EIGENSTRAT
(Patterson et al., 2006). All non-autosomal variants were
excluded from statistical analyses, as well as SNPs with a call
rate 598%, minor allele frequency 50.01, and/or significant
deviation from Hardy-Weinberg equilibrium in controls
(P51.0 � 10–4) (Supplementary Table 2). Following quality
control processing, the genotypes of 765 144 SNPs in 4069
Chinese individuals (1595 patients with Alzheimer’s disease and
2474 controls) were further analysed.

Phasing and imputation were performed by SHAPEIT
(Delaneau et al., 2011) and IMPUTE2 (Howie et al., 2009), re-
spectively, and version 3 of the 1000 Genomes Project data was
used as the reference set (Genomes Project et al., 2012).
Variants with r2 values 5 0.80 or impute information measures
5 0.50 from IMPUTE2, missing frequency 4 0.02, deviation
from Hardy-Weinberg equilibrium (P51.0 � 10–4), and minor
allele frequency 5 0.01 were excluded from post-imputation
quality control analysis. Logistic regression analysis of GWAS
data was conducted before and after imputation to test the dif-
ferences in allele dosage between cases with Alzheimer’s disease
and controls under an additive genetic model, adjusted for sex,
APOE status, age (defined as age-at-onset for cases and age-at-
last exam for controls), and population substructure using the
first two principal components with PLINK 1.90 software.
Manhattan and quantile-quantile plots of the first stage before
and after imputation and adjustments for sex and APOE status
were generated using the R qqman package (Version 3.4.2,
https://www.r-project.org/). Regional association plots were gen-
erated via LocusZoom (http://locuszoom.sph.umich.edu/locus
zoom/) (Pruim et al., 2010). Linkage disequilibrium plots of var-
iants in chromosome 19 were generated using Haploview soft-
ware (https://www.broadinstitute.org/haploview/haploview).
Conditional analysis was performed to assess the independence
of the novel associations of the genotyped SNPs. In addition,
stratified analysis was performed by gender and disease status.

Power calculations with Quanto software were applied to cal-
culate the power of the results from the discovery stage
(Gauderman et al., 2006). Alzheimer’s disease prevalence was
set to 3.21% in accordance with epidemiological studies of
Alzheimer’s disease in Chinese subjects aged 565 years (Jia
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et al., 2014). Parameters included outcome (disease), design (un-
matched case-control ratio of 1:1.5), hypothesis (gene only),
sample size (n = 1679 cases), significance (1.0 � 10–5, two-
sided), mode of inheritance (log-additive), and population risk
(0.0321).

Second stage

To replicate the first stage association results, the top 34 var-
iants showing an association with a P51.0 � 10–5 after adjust-
ing for age, sex, APOE status and the first two principal
components were selected and analysed as part of an independ-
ent cohort of 7319 Chinese individuals consisting of 2234 cases
with Alzheimer’s disease and 5085 controls (Table 1 and
Supplementary Table 1). These 34 SNPs were genotyped at
BioMiao Biological Technology Beijing Co. using the
MassArray System (Agena iPLEXassay).

Combined analysis of the first and second stages

To improve statistical power, a meta-analysis was applied to
combine the associated results from the first two stages using
METAL (Willer et al., 2010) with an inverse variance-based
model. Heterogeneity tests between the two groups were per-
formed using the Breslow-Day test (Higgins and Thompson,
2002), and the extent of heterogeneity was assessed using the I2

and P-values of the Q statistics calculated by METAL (Higgins
et al., 2003).

Single nucleotide polymorphism
annotation

SNPnexus was used for SNP annotation (https://www.snp-
nexus.org/v4/) (Chelala et al., 2009; Dayem Ullah et al., 2012,
2013, 2018). For co-localization of SNPs with significant associ-
ations in both stages of the study, we conducted expression
quantitative trait loci (eQTL) analysis using the dataset pre-
sented by Ramasamy et al. (2014), COLOC analysis (http://
coloc.cs.ucl.ac.uk) (Giambartolomei et al., 2014) using the
brain-eQTL datasets (Trabzuni et al., 2011; Ramasamy et al.,
2013), and summary Mendelian randomization-Heidi analysis
(https://cnsgenomics.com/software/smr/) (Zhu et al., 2016) using
summary eQTL data from the brain and blood (Westra et al.,
2013; Lloyd-Jones et al., 2017; Qi et al., 2018). The expression
of novel Alzheimer’s disease-associated genes was analysed
using data from the National Center for Biotechnology
Information Gene Expression Omnibus dataset (http://www.
ncbi.nlm.nih.gov/geo). These included the expression of genes in
the frontal cortex, hippocampus, and temporal cortex of con-
trols and patients with Alzheimer’s disease (Supplementary
Table 3). Prism software (version 8.0.0, GraphPad Software,
Inc., CA, USA) was used to compare gene expression between
cognitively normal and Alzheimer’s disease groups (unpaired t-
test and Welch’s t-test) and to generate figures. For the
Alzheimer’s disease-associated genes in this study, STRING ana-
lysis was performed to evaluate protein-protein interactions
(Szklarczyk et al., 2015). Medium confidence (0.400) was used
as the minimum required interaction score and no more than 50
interactors were shown in the first shell. The exported network
was analysed using the bioinformatics software platform
Cytoscape (Version: 3.7.1, https://cytoscape.org/). In addition,
we exported the Gene Ontology information, including molecu-
lar function, biological process, and cellular component, as well

as the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways for the network, from STRING analysis.

APOE genotyping

The APOE genotypes for haplotypes derived from rs7412 and
rs429358 in samples from both stages of the study were deter-
mined using the Sanger sequencing method (Sanger et al.,
1977).

Validation of gene associations in
Caucasian populations

To determine whether there is underlying heterogeneity in the
contributors of genetic risk between Chinese and Caucasian
populations, the eligible novel SNPs were examined in the data
from ‘The International Genomics of Alzheimer’s Project sum-
mary statistics from stage 1 data’ (Lambert et al., 2013b). The
genetic correlation between the Chinese GWAS and publicly
available International Genomics of Alzheimer’s Project (IGAP)
summary statistics was estimated using linkage disequilibrium
score regression implemented in the online software LD Hub
(http://ldsc.broadinstitute.org/) (Zheng et al., 2017).

Predictive model study

We performed predictive modelling using the polygenic risk
score based on SNP significance in combined analysis and
APOE status as predictor variables, based on the data of the
first stage. The individual polygenic risk scores were generated
as sums of the risk variants weighted by effect sizes derived
from logistic regression. We also ran the predictive analyses on
second-stage data using the same factors. Furthermore, we
tested different predictive models with different combinations of
SNPs in a population negative for APOE e4. Areas under the
receiver operating characteristic curve were calculated by com-
paring the observed case/control status and polygenic risk score
calculated using PRSice2 (Choi and O’Reilly, 2019) profiling in
a standard weighted allele-dose manner.

To confirm the capacity of the models to predict Alzheimer’s
disease, we applied the models to individuals who were
recruited in a longitudinal study from 2009 to 2019. To esti-
mate the effectiveness of the GWAS-based predictive models, by
measuring the fraction of individuals living without Alzheimer’s
disease for a certain amount of time from baseline, survival
curve analyses were performed using the follow-up data in this
longitudinal cohort.

Data availability

The data that support the findings of this study are available on
request from the corresponding author.

Results

Demographics of three cohorts

In the GWAS, a total of 11 506 individuals participated

in this two-stage study, including 3913 patients with

Alzheimer’s disease and 7593 controls (Supplementary
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Table 1). In the first stage, the mean age at onset of 1679

patients with Alzheimer’s disease was 72.07 ±6.4 years,

of which 949 (56.5%) were female, whereas the mean

age at examination of 2508 controls was 72.95 ± 19.5

years, of which 1398 (55.7%) were female. In the second

stage, the mean age at onset of 2234 patients with

Alzheimer’s disease was 72.35 ± 7.2 years of which 1,253

(56.1%) were female, whereas the mean age at examin-

ation of 5085 controls was 69.22 ± 7.0 years, of which

2931 (57.6%) were female. In the longitudinal cohort,

5474 individuals were recruited, comprising 2358

patients with Alzheimer’s disease and 3116 controls

(Supplementary Table 1). The mean age at onset of 2358

patients with Alzheimer’s disease was 71.70 ±6.8 years,

of which 1351 (57.3%) were female, whereas the mean

age at examination of 3116 controls was 74.70 ± 7.5

years, of which 1676 (53.8%) were female. The flow

chart of the current study is shown in Fig. 1.

Results from genome-wide

association studies

In the first stage, 1679 patients with Alzheimer’s disease and

2508 controls were genotyped (Supplementary Table 1).

Overall, 765 144 autosomal SNPs passed the quality control

standards and were included for further analysis. Principal

component analysis confirmed that the patients with

Alzheimer’s disease and controls were well-matched

(Supplementary Fig. 1). A quantile-quantile plot indicated

that population stratification had negligible effects on the

statistical results (kGC = 1.08; Supplementary Fig. 2). After

adjusting for age, sex, and APOE status along with the first

two principal components, several markers on various chro-

mosomes exhibited genome-wide significance, with the senti-

nel markers occurring on chromosome 19 (Supplementary

Fig. 3). Power calculations indicated that the sample size

used in this GWAS provided sufficient statistical power to

detect Alzheimer’s disease-associated variants. In the second

stage, the top 34 SNPs with evidence of associations with

Alzheimer’s disease (Supplementary Table 4) were selected

for genotyping as part of an independent Chinese cohort of

2234 patients with Alzheimer’s disease and 5085 controls

(Supplementary Table 1). Of these 34 Alzheimer’s disease-

associated SNPs, 13 surpassed the Bonferroni correction

threshold (P5 1.47 � 10–3) with no detectable heterogen-

eity between stages. This included nine SNPs on chromo-

some 19 in the APOE region (Jun et al., 2012) (APOE

rs439401, APOC1 rs4420638, TOMM40 rs2075650,

Figure 1 Study flow chart. AD = Alzheimer’s disease.
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TOMM40 rs71352238, TOMM40 rs157582, TOMM40

rs157580, NECTIN2 rs11668861, NECTIN2 rs3852860,

and NECTIN2 rs6859; Table 1). The other four SNPs were

not located on chromosome 19 (rs3777215, rs6859823,

rs234434, and rs2255835; P = 1.31 � 10–13, 5.32 � 10–15,

1.07 � 10––44, and 6.78 � 10–05, respectively). In combined

analysis, all 13 of these SNPs showed associations exceeding

the genome-wide significance threshold (P5 5.0 � 10–8;

Table 1). Furthermore, all four novel variants remained sig-

nificant after adjusting for the effect of APOE e4. Stratified

analyses indicated that the 34 top SNPs in the first stage

remained significant after stratification by gender

(Supplementary Table 5). Conditional analyses indicated

that the four novel SNPs we identified were independent sig-

nals (Supplementary Table 6).

Functional annotation of the four
novel single nucleotide
polymorphisms

Variant rs3777215 was significantly associated with

Alzheimer’s disease [Pcombined = 3.07 � 10–19, odds ratio

(OR) = 0.69] and was located on chromosome 5 in the in-

tron regions of RHOBTB3 and GLRX (Fig. 2A, Table 1

and Supplementary Table 7). As shown in Fig. 3,

RHOBTB3 was significantly upregulated in the frontal cor-

tex, hippocampus, and temporal cortex of patients with

Alzheimer’s disease compared to cognitively normal individ-

uals (P50.05, 0.01 or 0.0001; Fig. 3A). GLRX showed

lower expression levels in the brain tissues of patients with

Alzheimer’s disease than in that of cognitively normal indi-

viduals (P5 0.05, 0.01 or 0.0001; Fig. 3B). Another SNP

detected on chromosome 5 was rs6859823 (Pcombined =

2.49 � 10–23, OR = 0.74; Fig. 2B and Table 1). Variant

rs6859823 was intergenic and located between RNA5SP189

and CTC-278L1.1 (Supplementary Table 7). RNA5SP189

and CTC-278L1.1 were both identified as pseudogenes

according to GeneCards and SNPnexus, and neither have

been previously reported to be associated with Alzheimer’s

disease or any other disease. SNP rs234434 (Pcombined =

1.35 � 10–67, OR = 1.71; Fig. 2C and Table 1) was inter-

genic and was between two long intergenic non-coding

RNAs known as RP11-359N5.1 and CTD-2506J14.1. SNP

rs2255835 was located on chromosome 21 in the intron re-

gion of CHODL and showed genome-wide significance

(Pcombined = 4.81 � 10–9, OR = 1.23; Fig. 2D and Table 1).

CHODL expression was higher in the hippocampus

(P5 0.05; Fig. 3C) and lower in the temporal cortex of

patients with Alzheimer’s disease compared to that in nor-

mal individuals (P5 0.05; Fig. 3C). Co-localization analyses

indicated that the four SNPs were related to various genes

being expressed in the blood and different brain regions

(Supplementary Tables 8–11). Roadmap epigenomics

showed that rs3777215 and rs2255835 were related to tran-

scriptional activation (H3K36me3, H3K4me1, and

H3K14ac) in neurons or neuronal progenitor cells, whereas

rs234434 was associated with transcriptional repression

(H3K27me3) in neurons (Supplementary Table 7). STRING

analysis demonstrated that the proteins encoded by the vari-

ant genes, except for CHODL, interact with APOE

(Supplementary Fig. 4). Gene Ontology enrichments of the

genes in the STRING network suggested that these genes are

involved in several biological processes. For example,

RHOBTB3 was suggested to be involved in the ‘establish-

ment of localization’ and ‘transport’ (Supplementary Table

12). Genes enriched in Gene Ontology cellular components

and molecular functions, as well as KEGG pathways, are

listed in Supplementary Tables 13–15.

Validation in Caucasian genome-
wide association studies datasets

Overall, the APOE e4 allele frequency in Chinese subjects in

the present study was lower than that in Caucasians for

both, patients with Alzheimer’s disease and controls

(Supplementary Table 1). Despite these differences, nine

SNPs with significant associations in the APOE region in

the present study were either reported previously or found in

strong linkage disequilibrium with nearby SNPs in

Caucasians (Supplementary Fig. 5). One of the four novel

SNPs outside chromosome 19 reached genome-wide signifi-

cance in the IGAP stage 1 data for non-Asian populations

(rs6859823; Supplementary Table 16). Moreover, linkage

disequilibrium score regression analysis of Chinese GWAS

and publicly available IGAP summary statistics revealed a

genetic correlation of –0.14 (P = 0.73).

Predictive models

We tested 11 predictive models; four models were used to

analyse all populations (Fig. 4A–D) and seven models were

used to analyse subjects who were negative for APOE e4

(Fig. 4E–K) in this study. The number of SNPs in our mod-

els was relatively low, and even for the maximum, the num-

ber of SNPs for model A3 was only 13 with an AUC of

0.73 [95% confidence interval (CI): 0.70–0.75] in the first

stage. The AUCs of all 11 models were significant

(P5 0.05; range of AUC: 0.63–0.73), and the specific AUC

values for the 11 models are presented in Fig. 4. For model

A1, with the four novel SNPs found in this study and

APOE e4 status as predictors, training on the first-stage

data, prediction accuracy AUC = 0.69 (95% CI: 0.67–0.71)

was achieved based on a logistic regression model.

However, the prediction accuracy AUC reached 0.73 (95%

CI: 0.71–0.74) when using second-stage data (Fig. 4A).

Model B1 (with our four novel SNPs found in this study as

predictors) and model B4 (with two novel SNPs and two

SNPs in the APOE region in this study as predictors) cov-

ered more individuals who were negative for APOE e4 in

our study, and the number of model B2 was maximum in B

models with four novel SNPs and three APOE-region SNPs.

For model B1, the prediction accuracy AUC values were

0.63 (95% CI: 0.61–0.66) and 0.66 (95% CI: 0.63–0.69)
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based on the first and second data, respectively (Fig. 4E);

whereas, they were 0.71 (95% CI: 0.68–0.73) and 0.68

(95% CI: 0.65–0.70) for model B4 (Fig. 4H), and 0.72

(95% CI: 0.69–0.74) and 0.68 (95% CI: 0.65–0.70) for

model B2, based on the first and second data, respectively

(Fig. 4E).

Longitudinal study

In the longitudinal cohort, all 13 SNPs identified in the com-

bined analysis reached significance (P5 3.85 � 10–3;

Supplementary Table 17). The AUC values of the 11 predict-

ive models were also significant using the data from the lon-

gitudinal cohort (P5 0.05; range of AUC: 0.67–0.73;

Fig. 4). To confirm the capacity of the models to predict

Alzheimer’s disease, we performed survival curve analysis.

First, the predictive models were applied to individuals (2358

Alzheimer’s disease, 3116 controls, 5474 in total) in the

longitudinal study. Models A1–A4 were generated based on

an APOE e4-positive or APOE e4-negative population, and

models B1–B7 were based on an APOE e4-negative popula-

tion only. Because the same populations were included in

models A1–A4, and models B1–B7, we combined them into

model A and model B for survival analysis. Individuals were

divided into three groups as follows: model A positive (model

A + ), model B positive (model B + ), and model A or B nega-

tive (model A– or B–). In total, the number of subjects in

model A + was 213, in model B + was 1035, and in model

A– or B– was 4226. Data from individuals from each group

were plotted into the survival curve according to the follow-

up data comprising the incidence and onset of Alzheimer’s

disease from 2009 to 2019. Kaplan-Meier survival curve

analysis revealed significant differences between the model

A + , model B + , and model A– or B– groups (P5 0.001;

Fig. 4L), indicating that individuals with model A + and

model B + had a shorter latency and a higher proportion of

Figure 2 Regional association plots. (A–D) Association results are shown for the analysed SNPs with recombination rates in the four loci

associated with genome-wide significance at chromosome 5 (A and B), 14 (C), and 21 (D). The –log10 (P-values) (y-axis) of SNPs within the

±500 kb region centred on each marker SNP are presented according to the chromosomal positions of the SNPs (x-axis; NCBI Build 37). Purple

diamonds represent the most significantly associated SNP (marker SNP) in the combined analysis. SNPs are coloured according to their linkage

disequilibrium with the marker SNP. Linkage disequilibrium values were based on the 1000 Genome Project Asian data. Blue lines represent the

estimated recombination rates based on the 1000 Genome Project samples. Arrows depict genes in the regions of interest annotated from the

UCSC Genome Browser.

8 | BRAIN 2020: Page 8 of 14 L. Jia et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

aa364/5981992 by guest on 15 N
ovem

ber 2020

https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa364#supplementary-data


Figure 3 Differential expression of the annotated genes in Gene Expression Omnibus datasets. (A–C) shows the differential ex-

pression of RHOBTB3 (A), GLRX (B), CHODL (C) in frontal cortex, hippocampus, and temporal cortex. The bold red line indicates the median

of each group, and the black dotted lines show the quartiles. AD = Alzheimer’s disease; CN = cognitively normal; FC = fold change; GSE =

Gene Expression Omnibus Series; ns = no significance; *P5 0.05; **P5 0.01; ***P5 0.001; ****P5 0.0001.
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Alzheimer’s disease during the follow-up period. Our data

suggest that the 11 predictive models have sufficient capacity

for predicting Alzheimer’s disease risk.

Discussion
We found four novel variants in addition to nine APOE-

region variants that were correlated with Alzheimer’s dis-

ease risk in a Chinese population. Using different

combinations of these variants and the APOE status, we

established 11 predictive models with significant AUC

values. Validation of these models in a longitudinal co-

hort indicated the genetic power of SNPs for Alzheimer’s

disease prediction. Overall, these findings may improve

the understanding of how genetic variants impact the ini-

tiation of Alzheimer’s disease.

The novel variants identified are functionally involved in

the pathogenesis of Alzheimer’s disease. One of the anno-

tated genes for the novel SNP rs3777215 was RHOBTB3.

Figure 4 ROC curves for 11 predictive models with different predictors in the three cohorts and survival curves in a longitu-

dinal cohort. The factors included in the 11 models are as follows. (A) A1: APOE e4 status, rs3777215, rs6859823, rs234434 and rs2255835;

(B) A2: APOE e4 status, rs3777215, rs6859823, rs234434, rs2255835, rs11668861, rs71352238 and rs4420638; (C) A3: APOE e4 status,

rs3777215, rs6859823, rs234434, rs2255835, rs11668861, rs6859, rs3852860, rs71352238, rs157580, rs2075650, rs157582, rs439401 and

rs4420638; (D) A4: rs3777215, rs6859823, rs234434, rs2255835, rs11668861, rs6859, rs3852860, rs71352238, rs157580, rs2075650, rs157582,

rs439401 and rs4420638; (E) B1: rs3777215, rs6859823, rs234434 and rs2255835; (F) B2: rs3777215, rs6859823, rs234434, rs2255835,

rs11668861, rs71352238 and rs4420638; (G) B3: rs3777215, rs6859823, rs234434, rs71352238 and rs4420638; (H) B4: rs3777215, rs234434,

rs71352238 and rs4420638; (I) B5: rs6859823, rs234434, rs71352238 and rs4420638; (J) B6: rs3777215, rs6859823, rs234434 and rs71352238;

(K) B7: rs3777215, rs6859823, rs234434 and rs4420638. (L) Survival curves of the longitudinal cohort, *P5 0.001. AUC1 indicates AUC of the

first stage; AUC2 indicates AUC of the second stage; AUC3 indicates AUC of the longitudinal cohort; ROC = receiver operating characteristic

curve.
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Reported as a candidate Alzheimer’s disease vulnerability

gene through transcription analysis, this gene was found to

be overexpressed in the CA1 region following Alzheimer’s

disease progression (Miller et al., 2013). RHOBTB3 encodes

Rho-related BTB domain-containing protein 3 (RHOBTB3),

which is involved in endosome-to-Golgi transport and retro-

grade transport (Espinosa et al., 2009). Thus, RHOBTB3

may affect APP processing and provide a pathological basis

for the development of Alzheimer’s disease. The other anno-

tated gene for the novel SNP rs3777215 was GLRX, which

encodes glutaredoxin-1 (GRX1), an oxidoreductase that

contributes greatly to the antioxidant defence system and in-

ternal environment homeostasis. Functionally, GRX1 and

thioredoxin-1 (TRX1) are antioxidants and their reduced

forms can inhibit apoptosis signal regulating kinase (ASK1).

It has been reported that amyloid-b can oxidize GRX1 and

TRX1, resulting in apoptosis induction via ASK1 (Akterin

et al., 2006). Another study found that increasing GRX1

levels in the brain of an Alzheimer’s disease mouse model

can reverse synaptic dysfunction and cognitive deficits, sug-

gesting GRX1 as a target for Alzheimer’s disease interven-

tion (Kommaddi et al., 2019). For the novel SNP

rs2255835, the annotated gene was CHODL. This gene

encodes chondrolectin (CHODL), which is involved in the

endocytosis of glycoproteins and exogenous sugar-bearing

pathogens (Zelensky and Gready, 2005). CHODL affects

cell survival and neuronal outgrowth in animal models

(Sleigh et al., 2014). Interestingly, in some early-onset

patients with Alzheimer’s disease induced by APP duplica-

tion, the duplicated region also contains CHODL, as well as

eQTL-associated genes of rs2255835, such as BTG3,

C21orf91, and TMPRSS15, which may participate in neuro-

genesis and/or APP metabolism (McNaughton et al., 2012;

Wiseman et al., 2015).

Using different combinations of variants identified in the

current study, we established 11 predictive models. Building

predictive models based on GWAS data to distinguish

asymptomatic population at a high-risk of developing

Alzheimer’s disease from ‘normal’ individuals has gained at-

tention (Escott-Price et al., 2015, 2017a, b, 2019; Chouraki

et al., 2016; Stocker et al., 2018), and some recent studies

have focused on predicting the conversion from mild cogni-

tive impairment to Alzheimer’s disease via models based on

genetic factors (Lacour et al., 2017; Chaudhury et al.,

2019). Escott-Price and colleagues demonstrated a prediction

accuracy of 75–84% for Alzheimer’s disease risk with cer-

tain predictors (APOE, polygenic risk score calculated from

more than 20 000 SNPs, sex, and age) (Escott-Price et al.,

2015). In addition, Sultan and colleagues reported that the

prediction accuracy of their models, with APOE SNPs

(rs7412 and rs429358), 165 non-APOE SNPs, sex, and age

as predictors was 82.5% for predicting the conversion from

mild cognitive impairment to Alzheimer’s disease

(Chaudhury et al., 2019). However, most of these models

included too many SNPs, preventing their use in clinics.

Therefore, we established predictive models to determine the

risks of the possibility of developing Alzheimer’s disease. In

our A models, models A1 and A2 may be easier to use in

clinics, as the number of SNPs in model A1 or model A2

was smaller than that in model A3, and the AUC of model

A1 or model A2 was similar to that of model A3. However,

these models are no longer suitable for populations negative

for APOE e4 comprising a more important group. Thus, we

constructed models B1–B7. These models incorporate fewer

SNPs and show significant AUC values. In the B models, the

AUC of model B4 was similar to that of model B2, but the

number of SNPs in model B4 was approximately half of

that of model B2. Therefore, models B4–B7 are recom-

mended as more of the population can be covered by these

models in clinical practice. Overall, the 11 predictive models

appear to be useful for identifying the indications of

Alzheimer’s disease risk in the sectional datasets. To confirm

the capacity of the models to predict Alzheimer’s disease, we

performed survival curve analysis on a longitudinal cohort.

The results showed that individuals carrying risk variants

included in either model A or model B had a shorter latency

and higher incidence of Alzheimer’s disease, suggesting that

our models can predict Alzheimer’s disease onset in a popu-

lation with genetic susceptibility. The mechanism of this gen-

etic susceptibility requires further analysis.

The current study had some limitations. First, the novel

variants we identified are involved in the pathogenesis of

Alzheimer’s disease based on bioinformatic analysis and lit-

erature mining, but we did not conduct functional research

on these novel variants. However, validation of the predict-

ive models indicated the contributions of these variants to

sporadic Alzheimer’s disease development. Second, the pre-

diction accuracies of our models were relatively low com-

pared to those of other predictive models but the models

were verified to be effective and accessible for predicting

Alzheimer’s disease onset based on a 10-year longitudinal

cohort and sectional datasets. Third, although the longitu-

dinal study (COAST) we used was prospective, the use of

current diagnoses of individuals was compared with the ini-

tial condition at baseline and was used to validate our pre-

dictive model and to confirm the accuracy and effectiveness

of our models to predict Alzheimer’s disease. This is rational

because the DNA of individuals at baseline may reflect the

true genetic conditions. Fourth, the significant SNPs in the

discovery stage, which were not replicated in the second

stage, did not pass the heterogeneity test. This may be be-

cause of differences in the genetic background of the

Chinese population (Supplementary Table 18), which is sup-

ported by other studies (Chen et al., 2009; Tan et al., 2013;

Tao et al., 2017; Wang et al., 2018). Finally, despite the

power calculation indicating that our sample size was suffi-

cient to detect associations, larger sample sizes based on

Chinese populations are required in future studies, as well as

analyses of populations of other ethnicities, to generate more

reliable results.

In conclusion, we identified four novel susceptibility var-

iants for Alzheimer’s disease, improving the understanding

of the genetic predisposition to Alzheimer’s disease.

Annotated genes of these variants were related to APP

Predictive models for Alzheimer’s disease BRAIN 2020: Page 11 of 14 | 11

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

aa364/5981992 by guest on 15 N
ovem

ber 2020

https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa364#supplementary-data


metabolism, antioxidation, and neurogenesis. The contribu-

tions of these variants to sporadic Alzheimer’s disease devel-

opment were confirmed to be efficient based on validation

of the predictive models in a longitudinal study. This is the

first study to validate GWAS-based predictive models for

evaluating the risk of Alzheimer’s disease onset in a Chinese

population. The clinical application of these models is of po-

tential use for individuals harbouring these risk variants but

must be validated in a larger population.
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