Showcasing research from Doctor Nao Xiao’s group, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China.

Monitoring ADP and ATP in vivo using a fluorescent Ga(III)-probe complex

A naphthol-based sensor (L) was designed and synthesized for the specific recognition of Ga^{3+} using fluorescence enhancement. An in situ generated L–Ga^{3+} ensemble detected ADP and ATP more selectively through a fluorescent “switch off” response, which was confirmed both in cells and in adult zebrafish.

As featured in:

Monitoring ADP and ATP in vivo using a fluorescent Ga(III)-probe complex†

Xinyu Zhang, Yuqian Jiang and Nao Xiao*

A naphthol-based sensor (L) was designed and synthesized for the specific recognition of Ga³⁺ using fluorescence enhancement. An in situ generated L–Ga³⁺ ensemble detected ADP and ATP more selectively through a fluorescence “switch off” response, which was confirmed both in cells and in adult zebrafish.

Gallium is a rare metal found in soil and is extensively used as a semiconductor material and in chemical synthesis, fuel storage and antitumor medication. However, Ga-based industrial wastes can contribute to environmental pollution, and especially, Ga-based harmful residues can further build up in the body leading to anemia and hypercalciuria, and inhibit osteoclast bone resorption.1 Therefore, convenient visualization and quantitative detection methods are required for monitoring trace concentrations of gallium(m). A fluorescent sensor is a good candidate for Ga³⁺ detection. This type of method exhibits some advantages such as being convenient, noninvasiveness, carried out in real time, low price, requiring small sample amounts, and possessing high sensitivity and selectivity.2–10 However, just a few Schiff base-type fluorescent probes for the detection of gallium have been reported in recent years.1,11–17 Therefore, the development of new and improved chemosensors for the selective determination of Ga³⁺ is necessary.

Adenosine 5’-monophosphate (AMP), adenosine 5’-diphosphate (ADP) and adenosine 5’-triphosphate (ATP) mainly function as energy substances in various biological processes. Deficiency in the adenosine-phosphate level is considered to be linked with many cellular processes. Monitoring of the adenosine-phosphate concentration level in vitro and in vivo is thus important for studying and understanding multiple cellular mechanisms. Therefore, some works have been devoted to detect the structurally similar AMP, ADP or ATP.18–23 However, there are only a few reports that have been devoted to the detection of polyphosphates by Ga³⁺ complexes, although gallium possesses strong binding affinity for diphosphates and triphosphates.24–26

In this work, we have designed and synthesized a fluorescent naphthol-based sensor L (Scheme 1a) containing electron-donating Schiff base N, thiazole N and phenolic OH, which provide binding sites to gallium ions. The naphthol ring appears to provide a rigid conjugated matrix. These features of L can specifically detect Ga³⁺ from other ions in dimethyl sulfoxide (DMSO) aqueous solution, accompanied by a strong green fluorescence enhancement. The L–Ga³⁺ self-assembled fluorescent sensor shows significant fluorescence turn-off only when ADP or ATP is present among anions. The possible application of L–Ga³⁺ as an in vivo or in vitro sensor of ADP or ATP is also reported by our fluorescence imaging results with living cells and adult zebrafish.

The chemosensor (L) was easily synthesized with a modified procedure using 2-hydroxy-1-naphthaldehyde and 2-hydrazinobenzothiazole with 89.20% yield (Scheme 1a).27,28 L was characterized by 1H NMR, 13C NMR, and ESI-MS (Fig. S1–S3, ESI†). Further evidence was obtained from the crystal data of L, as shown in Fig. S36 and Tables S4–S6 (ESI†).

In order to investigate the effect of solvents on fluorescence enhancement when L is chelated with Ga³⁺, the fluorescence
The fluorescence intensity, the addition of 10 equiv. of Ga\(^{3+}\) caused gradual enhancement of fluorescence until more than a 150-fold increase of the green emission band at \(\lambda_{\text{max}} = 518\) nm (Fig. S11, ESI\(^\dagger\)). This indicated that the fluorescence intensity depended on the numbers of formed emitters of L–Ga\(^{3+}\). The designed recognition with an off-on fluorescence change was achieved. Competition experiments were performed to explore the anti-interference ability of L–Ga\(^{3+}\) (5.0 \(\mu\)M, 1 : 10) by adding 10 equiv. of other metal ions. It was found that all competitive metal ions had no obvious interference to L–Ga\(^{3+}\) (Fig. S12, ESI\(^\dagger\)). This finding indicates that L can selectively distinguish Ga\(^{3+}\) from other metal ions.

We also studied the response of fluorescence lifetime and quantum yields (\(\Phi\)) to the concentration of Ga\(^{3+}\). As shown in Fig. 2, L initially showed a two-exponential decay, which limited the fluorescence emission. The average lifetime of \(\tau_a = 4.16\) ns became longer, \(\tau = 4.35\) ns, after addition of Ga\(^{3+}\) (Table S1, ESI\(^\dagger\)). When L chelated with Ga\(^{3+}\), L–Ga\(^{3+}\) exhibited a single-exponential decay with almost the same lifetime. These results revealed that the fluorescence lifetime depends on the intrinsic photophysical properties of each emitter. As displayed in Table S2 (ESI\(^\dagger\)), the fluorescence quantum yields of L at \(\lambda_{\text{em}} = 518\) nm increased from 35.46% to 69.03%, 89.20%, 85.90% and 82.71% in the presence of 0.5, 1.0, 2.0, 4.0 and 8.0 equiv. of Ga\(^{3+}\), respectively. The fluorescence quantum yield of L measured in the presence of 2.0 equiv. Ga\(^{3+}\) was \(\Phi = 0.892\), which was the highest value compared to those reported with other chemosensors. The slightly decreased values of \(\Phi = 0.8590\) and \(\Phi = 0.8271\) were the result of a self-absorption phenomenon.

The binding affinity of L towards Ga\(^{3+}\) was quantified based on fluorescence titration experiments using a Job plot, which
showed that Ga\(^{3+}\) binds with L in a 1:1 stoichiometry (Fig. S13, ESI†). These fluorescence spectra implied a structural change in L upon complexation with Ga\(^{3+}\). To clarify this structural change, ESI-MS analysis and \(^1\)H NMR titration were carried out to further investigate the response mechanism. Upon addition of Ga\(^{3+}\), the observed molecular-ion peaks appearing at 705.18, 705.07 and 706.99 were attributed to the isotopic peaks of [2L–2H + Ga\(^{3+}\)] (calcd for C\(_{36}\)H\(_{24}\)GaN\(_6\)O\(_2\)S\(_2\): 705.07, 706.07 and 707.06). These peaks almost disappeared with the formation of a new intense peak corresponding to 465.59 [L–H + Ga\(^{3+}\) + DMSO\(^-\)] (calcd for C\(_{20}\)H\(_{19}\)GaN\(_3\)O\(_2\)S\(_2\): 466.02) (Fig. S14–S18, ESI†). The Job plot and ESI-MS results indicated a 1:1 binding model between L and Ga\(^{3+}\) in DMSO aqueous solution. The \(^1\)H NMR spectra of L recorded in mixed DMSO-\(d_6\)-\(d_2\)O solution upon increasing Ga\(^{3+}\) showed small but significant spectral changes which were due to the decrease in electron density of the L unit by Ga–N coordination (Fig. S19, ESI†). The phenolic OH of L did not appear in \(d_2\)O solution, indicating that the –OH protons were deprotonated. The proton signals at ~9.18 ppm and ~8.58 ppm were attributed to CH– and –NH– protons, respectively. The addition of Ga\(^{3+}\) gradually induced a downfield shift of the CH–N proton from ~9.18 ppm to ~9.20 ppm, and finally the original signal was replaced by a new one. This finding indicates that the nitrogen atom of the CH–N group was involved in the binding with Ga\(^{3+}\). Chelation of L with Ga\(^{3+}\) led to a highfield shift of the –NH– proton from ~8.58 ppm to ~8.10 ppm, and the original signal was also replaced by a new one. This suggests that thiazolyl was involved in the binding with Ga\(^{3+}\). Based on the \(^1\)H NMR titration experiments and the structures of similar types of Ga\(^{3+}\) complexes reported earlier,\(^{13-15}\) L might bind with Ga\(^{3+}\) by –OH–H–N and –NH– in a tridentate fashion. Subsequently, the association constant (K\(_a\)) was determined to be about 5.54 × 10\(^4\) M\(^{-1}\) using a Benesi–Hildebrand plot (Fig. S20, ESI†) by fitting the plots of fluorescence intensity against Ga\(^{3+}\) concentrations. Ga\(^{3+}\) could be detected down to 7.83 nM based on the 32/slope when 5.0 \(\mu\)M L was employed, which is the lowest value compared to those reported in the literature. The lowest detection limit of probe L with Ga\(^{3+}\) was determined from the linear relationship of fluorescence emission intensity at \(\lambda_{em}\) = 518 nm, i.e., \(I_{518}\) vs. \([\text{Ga}^{3+}]\) having \(R^2 = 0.9994\) upon titration of probe L with Ga\(^{3+}\) (Fig. S21, ESI†). L was compared with other Ga\(^{3+}\) fluorescent sensors, as presented in Table S3 (ESI†).

The mechanism of the fluorescence response of L to Ga\(^{3+}\) is the combination of ESIFT (excited state intra-molecular proton transfer) and CHEF (chelation enhanced fluorescence). Owing to C–N and adjacent OH, L has the feature of ESIFT, which exhibits a weak emission at 518 nm as shown in Scheme 1b. The introduction of Ga\(^{3+}\) binding with C–N and OH further restrains ESIFT. The chelation of L with Ga\(^{3+}\) led to the formation of a stable complex L–Ga\(^{3+}\) and, consequently, the chelated system enhanced fluorescence at 518 nm due to the CHEF.

Systemic studies confirmed that increasing the ratio of Ga\(^{3+}\) to L facilitated the absolute formation of L–Ga\(^{3+}\), so a 1:2 ratio of L to Ga\(^{3+}\) was chosen for sensing anions in DMSO–H\(_2\)O (v/v = 9:1). The competitive experiments were carried out using L–Ga\(^{3+}\) (5.0 \(\mu\)M) with 10 equiv. of various anions, including I\(^-\), F\(^-\), Br\(^-\), Cl\(^-\), CN\(^-\), AMP, ADP, ATP, NO\(_3\)\(^-\), CO\(_3\)\(^2-\), SO\(_4\)\(^2-\), PO\(_4\)\(^3-\), ClO\(_4\)\(^-\), HCO\(_3\)\(^-\), HSO\(_4\)\(^-\), H\(_3\)PO\(_4\)\(^-\) and CH\(_3\)CO\(_2\)\(^-\) in DMSO/H\(_2\)O (v/v = 9/1) solution. Much to our delight, only very slight fluorescence changes at 518 nm with small error bars were observed when L–Ga\(^{3+}\) was exposed to these interferents, except ADP and ATP which quenched the fluorescence intensity (Fig. 3). Here, taking the assembled probe L–Ga\(^{3+}\) (the molar ratio is 1:2) with ATP as an example, the spectral changes were illustrated. As shown in Fig. S23 and S25 (ESI†), the emission intensity of L–Ga\(^{3+}\) at 518 nm constantly decreased until 5.5 equiv. of ATP were added. ATP greatly quenched the fluorescence of L–Ga\(^{3+}\) complexes, which suggested that ATP restrains L from interacting with Ga\(^{3+}\) and breaks the self-assembly of metal–ligand. The sensing ability of L–Ga\(^{3+}\) for ATP was further determined by fluorescence titration.

The major species with m/z = 715.85 was observed in mass spectra (Fig. S27, ESI†), which matched with the isotope patterns for [Ga(ATP)(DMSO)(MeOH)\(_2\)2H\(^+\)] (calcd for C\(_{18}\)H\(_{14}\)N\(_3\)O\(_3\)P\(_2\)GaS: 715.97). The observation of m/z = 320.43 (calcd for C\(_{18}\)H\(_{14}\)N\(_3\)O \(\delta\)S: 320.09) pointed to the recovery of ligand L (Fig. S28, ESI†). Binding of ATP with Ga\(^{3+}\) was further confirmed by \(^{31}\)P NMR spectral study (Fig. S30, ESI†). The clear differentiation of \(^{31}\)P NMR signals was observed. In the presence of excess ATP, \(\gamma\)-phosphorus atoms of ATP underwent upfield shifts, and the P–\(\beta\)-atom experienced downfield shifts. Meanwhile, the broadening and shifting in \(^{31}\)P NMR signals for \(\alpha\), \(\beta\), and \(\gamma\)-atoms confirm the binding to Ga\(^{3+}\) through the oxygen atom bearing the negative charge of the respective phosphate unit. These results confirmed that ATP recognition occurs from the extrusion of Ga\(^{3+}\) from the L–Ga\(^{3+}\) complex, accompanying the ESIFT from phenolic OH to the Schiff base N in L. The combination of L–Ga\(^{3+}\) and ATP resulted in the CHEF inhibition and ESIFT restoration with quenching of the bright green emission. It was assumed that ATP was attracted to Ga\(^{3+}\) through electrostatic interaction between positively charged Ga\(^{3+}\) and the phosphate group. The proposed mechanism is shown in Scheme 1b.

The effect of pH on L and L–Ga\(^{3+}\) was investigated. As shown in Fig. S31 (ESI†), an appropriate pH range for the detection of ADP or ATP is 6–8. MTT assays are shown in Fig. S34 (ESI†), indicating that more than 95% cells remain alive at the detected concentration of L–Ga\(^{3+}\) (1:2) (60 \(\mu\)M). Considering the potential application, the fluorescence properties of complex L–Ga\(^{3+}\) in culture medium (0.1% DMSO, v/v) solution were then studied.
in detail. Compared to that in DMSO–H₂O (v/v = 9 : 1) solution, the fluorescence intensity of L–Ga³⁺ was quenched severely. But interestingly, L–Ga³⁺ caused a significant fluorescence enhancement in the culture medium, accompanied by the obvious hypochromatic shift of 18 nm to around 500 nm (Fig. S35, ESI†), which is probably due to a change in the polarity of the solvent systems. The enhanced fluorescence intensity was sequentially quenched by adding ATP. These results clearly indicated that L–Ga³⁺ can serve as a turn-off probe to detect ATP under physiological conditions. The L–Ga³⁺ complex was further used to map ATP in living cells by bioimaging. Normal human bronchial epithelial (16HBE) cells were first exposed to chemosensor L–Ga³⁺ (60 μM) for 1 h and then incubated with 120 μM of ATP for 1 h at 37 °C. Strong fluorescence was observed in the cells previously incubated with L–Ga³⁺. As shown in Fig. 4a, an apparent fluorescence signal appeared in the cytoplasm, but not in the nucleus. When the cells were first exposed to L–Ga³⁺, subsequently treated with ATP, the fluorescence signals from L–Ga³⁺ obviously decreased, indicating that the L–Ga³⁺ could provide a selective response to ATP levels in living cells. To assess the applicability of the proposed method, adult zebrafish were used to investigate whether L–Ga³⁺ can respond to ATP in complex environments. Strong fluorescence was noticed for the adult zebrafish incubated with L–Ga³⁺ (60 μM) for 1 h. The fluorescence signal was significantly quenched for the zebrafish pre-treated with exogenous ATP (120 μM) for 1 h before being exposed to L–Ga³⁺ (60 μM) for 1 h. The summarized results in Fig. 4b indicate the feasibility and reliability of the present method for ADP and ATP detection under practical biological conditions.

In summary, chemosensor L based on a naphthol fluorophore demonstrated a unique selectivity toward Ga³⁺ via fluorescence turn-on in DMSO aqueous solution. Furthermore, the L–Ga³⁺ ensemble demonstrated high selectivity and sensitivity toward ADP and ATP over anions in aqueous solution, which quenched the fluorescence of the ensemble by displacing the gallium ion from it. Spectral data analysis, including fluorescence and ESI-MS, suggested that the polyphosphate anions were likely bound to gallium during the sensing process. The fluorophore L–Ga³⁺ ensemble is capable of mapping ADP and ATP in cells and adult zebrafish. This finding shows that L–Ga³⁺ offers potential value for ADP and ATP detection in clinical applications.

This work was supported by the grants from the Beijing Natural Science Foundation (2174069) and Scientific Research Common Program of Beijing Municipal Commission of Education (KM201510025007). We would like to thank Zhongwei Zhao, Chenjie Fang, Wenqi Wu, Jun Deng, Zhongxin Xiao and Jun Ma of Capital Medical University, Beijing, China.

Conflicts of interest

There are no conflicts to declare.

Notes and references